
Application Note
DCAN to MCAN Migration Guide

Sahil Deshpande and Hareesh Janakiraman C2000 Microcontrollers

ABSTRACT

C2000 Real-time MCUs feature three types of Controller Area Network (CAN) modules: eCAN, DCAN and
MCAN. While eCAN and DCAN only support classic CAN, MCAN supports both classic CAN and CAN FD.
Devices such as TMS320F2838xD, TMS320F2838xS, TMS320F28003x and TMS320F280015x feature both
DCAN and MCAN modules. Some C2000 devices only feature the MCAN module since it supports both
classic CAN and CAN FD. Although all of the aforementioned CAN modules are compliant with the CAN
protocol standard, none of them are software-compatible with each other. Specifically, the DCAN and MCAN
module employ a completely different architecture and hence, register and bit structure. This warrants a very
different programming approach between the modules. This document is intended to ease the migration from
DCAN to the MCAN module. It discusses the most common operations such as module initialization, bit-timing
configuration, message RAM configuration, buffer and FIFO configuration, data transmission, reception (with
filtering) and error handling. It explains how these operations are done in DCAN and MCAN modules. Code
snippets are shown as warranted.

Table of Contents
1 Introduction...2
2 Key Differences Between DCAN and MCAN ... 2
3 Module Initialization..2

3.1 DCAN Initialization... 3
3.2 MCAN Initialization...3
3.3 Initialization sequence..3
3.4 Code Snippets for Module Initialization..4

4 Bit Timing Configuration..7
5 Message RAM Configuration...9
6 Interrupt handling... 11

6.1 MCAN Interrupt Sources.. 11
6.2 DCAN Interrupt Handling... 12
6.3 MCAN Interrupt Handling... 15

7 Transmitting data..17
7.1 Basic Transmission Process.. 17
7.2 MCAN Vs DCAN Transmit Procedural Differences..17
7.3 MCAN Transmit Concepts..18

8 Receiving Data.. 21
8.1 Introduction to Reception... 21
8.2 Basic Reception Process... 21
8.3 Filter Elements... 23
8.4 Rx Buffer.. 25
8.5 Rx FIFO..26
8.6 Receiving High Priority Messages... 27

9 Avoiding network errors.. 28
10 References.. 28

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

1 Introduction
On any given device, C2000 MCUs have typically featured only one type of CAN module. For example, either
eCAN or DCAN. When MCAN was introduced in the C2000 family, some MCUs featured both DCAN and
MCAN. This necessitated the user to understand and program two completely different types of CAN modules.
To eliminate this hardship, MCAN has been chosen as the CAN platform moving forward, since MCAN supports
both classic CAN as well as CAN FD. This document lists the primary differences between the DCAN and MCAN
modules. It then proceeds to highlight how common operations are done in both modules.

To determine which CAN module is featured in a given C2000 MCU, see C2000 Real-time Control MCU
Peripherals Guide.

2 Key Differences Between DCAN and MCAN
CAN FD offers two significant advantages over classic CAN:

• Faster bit-rate in the data-phase, increasing the overall throughput. An application can choose to transmit the
entire frame at the same bit-rate by setting CCCR.BRSE = 0. This way, the application still takes advantage
of the higher payload capability of CAN FD.

• Higher payload size (up to 64 bytes) compared to classic CAN (up to 8 bytes), reducing protocol overhead.

Note that the physical-layer requirements in terms of transceiver, bus termination and so forth is identical
between Classic CAN and CAN FD. If higher bit-rates are desired for the data phase in CAN FD, then
transceivers designed for such bit-rates must be used.

Table 2-1 highlights the key differences between the DCAN and MCAN modules from a usage and programming
perspective.

Table 2-1. DCAN and MCAN Feature Differences
Feature DCAN MCAN

Bit-rate Fixed bit-rate for the entire frame Two bit-rates can be used: a slower bit-rate
for the nominal phase and a faster bit-rate for
the data phase

Transmission speed Capped at 1Mbps Up to 1Mbps can be used for the nominal
phase and up to 5Mbps for the data phase

Number of bytes transmitted per frame
(Payload capability)

Any number of bytes from 0 to 8 can be
transmitted

In addition to 0 to 8 bytes, transmission of
12/16/20/24/32/48/64 data bytes is possible

Nomenclature of data storage elements Data is stored in Message Objects. Message
objects are also sometimes referred to as
Mailboxes.

Data is stored in buffers tied to filter elements

Number of data storage elements Fixed at 32, regardless of the number of
bytes to be transmitted or received

Depending on the configuration of the
element, the number of buffers is flexible

CRC-field length 15 bits 15, 17 or 21-bit CRC

Time-stamping support No Yes

Transmitter delay compensation Not required Required for faster bit-rates in the data phase

3 Module Initialization
The first few initialization steps are identical for both DCAN and MCAN modules. The initialization mode is
entered either by software (setting the CAN_CTL.INIT and MCAN_CCCR.INIT bits, respectively), by a hardware
reset, by going to a bus-off state or in the case of MCAN, on the detection of an uncorrected bit error in the
Message RAM. In this state, the message transfer is stopped, the CANTX output is driven recessive (high) and
the error counters remain unchanged. Setting the INIT bit does not change any configuration registers.

To complete the software initialization, the INIT bit can be reset, and after an occurrence of a sequence of 11
recessive bits (Bus-idle state), communication can commence.

The step-by-step process for module initialization is shown below for each module.

Introduction www.ti.com

2 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/lit/SPRU566
http://www.ti.com/lit/SPRU566
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

3.1 DCAN Initialization
1. Initialize Message RAM
2. Configure bit-timing
3. Configure Message Objects (optional → can also be done after initialization and while module is

operational).

3.2 MCAN Initialization
1. Configure Message RAM (See Section 5).
2. Configure CAN mode (Classic CAN or CAN FD).
3. Configure bit-timing (See Section 4).
4. Configure bit-rate switching (enable or disable).
5. Configure Filter Elements (optional → can also be done after initialization and while module is operational).

Note that the status registers related to Tx/Rx are reset on switching to init mode in MCAN.

3.3 Initialization sequence
The individual steps for initialization of DCAN and MCAN modules, along with the key differences have been
listed in Table 3-1:

Table 3-1. DCAN/MCAN Initialization Sequence
Operation DCAN MCAN

Enter Initialization Mode Set CAN_CTL.INIT bit Set MCAN_CCCR.INIT bit and check that the
bit has been set

Unlock Protected Registers Set CAN_CTL.CCE bit Set MCAN_CCCR.CCE bit

Configure CAN Mode and Bit Rate Switching Not applicable Set MCAN_CCCR.FDOE bit for CAN FD
function
Set MCAN_CCCR.BRSE bit to enable Bit
Rate Switching (BRS)
(Both bits need to be 0 for Classic CAN
Communication)

Configure bit-timing Configure CAN_BTR register Configure MCAN_NBTP register

Configure data bit-timing Not applicable Configure MCAN_DBTP register (Not needed
for Classic CAN as BRS is disabled)

Message RAM Configuration Not applicable See Message RAM configuration

Global Filter Configuration, if required
(determines how the module handles non-
matching frames).

Not applicable Set MCAN_GFC Register

Receive and Transmit Configuration (can be
done at run time as well)

Setup Message Object Filter Configuration

Lock Protected Registers Clear CAN_CTL.CCE bit Clear MCAN_CCCR.CCE bit

Return module to normal operation Clear CAN_CTL.INIT bit Clear MCAN_CCCR.INIT bit

In addition to the steps shown above, for MCAN, the MCAN Clock Divider may need to be set up as part of the
initialization process. This configuration is typically done via the AUXCLKDIVSEL register (refer to the device-
specific TRM to determine the register for clock division). For 120 MHz and 200 MHz devices, C2000ware
examples configure the MCAN bit-clock to 40 MHz. If an application desires a smaller time quanta (TQ), other
configurations for the bit-clock are possible. However, the parameters for the Nominal and Data Bit Timings need
to be changed accordingly. Figure 3-1 shows the initialization steps for DCAN. Figure 3-2, Figure 3-3, and Figure
3-4 show the initialization steps for MCAN.

www.ti.com Module Initialization

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

3.4 Code Snippets for Module Initialization
Code snippets for module initialization is shown in the following figures.

Figure 3-1. DCAN Initialization

Module Initialization www.ti.com

4 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 3-2. MCAN GPIO and Clock Initialization

www.ti.com Module Initialization

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 3-3. MCAN Operating Mode and Global Filter Configuration

Module Initialization www.ti.com

6 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 3-4. MCAN Initialization completion

4 Bit Timing Configuration
Bit timing configuration differs between classic CAN and CAN FD. The process is relatively easier in classic
CAN, since the bit-rate is the same for the entire frame. However, in CAN FD, two different bit-rates can be used:
a slower “nominal” bit-rate and a faster “data” bit-rate. In the MCAN module, these two bit-rates are configured
by writing to the MCAN_NBTP and MCAN_DBTP registers respectively during the module initialization. Note that
an application can choose to only take advantage of the higher number of data bytes per frame that can be
transmitted in CAN FD and use the same bit-rate for the entire frame. The faster bit-rate for the data phase also
warrants Transmitter Delay Compensation (TDC) without which bit errors can occur. Below is an example for
calculating bit-timing parameters:

Example 1

Assume the following parameters are desired with a CAN module clock of 200 MHz:

Nominal bit-rate = 500kbps, Data bit-rate = 2Mbps.

www.ti.com Bit Timing Configuration

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 7

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

The formula for computing the bit-rate is given by:

Bit − rate = CAN module clockBit − rate prescaler × Bit − time (1)

For a nominal bit-rate of 500kbps, the product of Bit-rate prescaler x Bit-time must be equal to 400. This can
be achieved with multiple combinations of the prescaler and bit-time, as long as the rules laid out by the CAN
protocol are not violated. For example, a prescaler of 20 and a bit-time of 20 TQ can be chosen. A prescaler of
20 (NBRPreg = 19) yields a bit-clock of 10 MHz with a resultant time-quanta (TQ) of 100 ns. A bit-time of 20 TQ
can be achieved with multiple combinations for TSEG1 and TSEG2 resulting in varying sample-points (SP).

Bit-time = (NTSEG1reg + 1) + (NTSEG2reg + 1) + 1, where NTSEG1reg and NTSEG2reg represent the actual
values written into MCAN_NBTP.NTSEG1 and MCAN_NBTP.NTSEG2 bit-fields respectively. If TSEG1 is chosen
to be 16 (NTSEG1reg = 15) and TSEG2 is chosen to be 4 (NTSEG2reg =3), those values yield a sampling-point
of 80%. By adjusting the TSEG1 and TSEG2 values, the sampling-point can be moved within the bit-time based
on the network parameters.

Similar calculation is used for data bit-rate of 2Mbps. For a data bit-rate of 2Mbps, the product of Bit-rate
prescaler x Bit-time must be equal to 100. This can be achieved with multiple combinations of the prescaler
and bit-time, as long as the rules laid out by the CAN protocol are not violated. For example, a prescaler of
5 and a bit-time of 20 TQ can be chosen. A prescaler of 5 (DBRPreg = 4) yields a bit-clock of 40 MHz with a
resultant time-quanta (TQ) of 25ns. A bit-time of 20 TQ can be achieved with multiple combinations for TSEG1
and TSEG2 resulting in varying sample-points (SP).

Bit-time = (DTSEG1reg + 1) + (DTSEG2reg + 1) + 1, where DTSEG1reg and DTSEG1reg represent the actual
values written into MCAN_DBTP.DTSEG1 and MCAN_DBTP.DTSEG2 bit-fields respectively. If TSEG1 is chosen
to be 16 (DTSEG1reg = 15) and TSEG2 is chosen to be 4 (NTSEG2reg =3), those values yield a sampling-point
of 80%. By adjusting the TSEG1 and TSEG2 values, the sampling-point can be moved within the bit-time based
on the network parameters.

Figure 4-1. MCAN Bit-timing Configuration

Bit Timing Configuration www.ti.com

8 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

5 Message RAM Configuration
In DCAN, Message RAM can only be accessed by the Message Handler. The Driverlib APIs interact with the
Message Interface (IFx) registers which carry out the read or write operations with the Message RAM. In MCAN,
Driverlib APIs can be used to carry out the read or write operations with the Message RAM directly.

The Message RAM is structured differently in MCAN as compared to DCAN. In DCAN, the number of message
objects in the Message RAM is fixed at 32 and each message object can be configured for either transmit or
receive operation.

However, in MCAN, Message RAM can be configured to have the following sections:

• Standard Filter Element
• Extended Filter Element
• Rx Buffer
• Rx FIFO
• Tx Buffer
• Tx FIFO or Tx Queue
• Tx Event FIFO

The design of MCAN Message RAM offers tremendous flexibility, enabling allocation of the available memory
to each of the sections mentioned above based on the application needs. The sections can be ordered in any
manner and the unused sections can be allocated zero memory. Note that Message RAM size can vary from
one device to another. Refer the device-specific data sheet for more information.

Message RAM configuration involves defining the following:

• Starting address for every section used.
• The number of elements in each section.
• The size of the elements which is different for different size of data packets as can be seen in Table 5-1 (Filter

Elements and Tx Event FIFO have fixed sizes).

These values are written to specific registers and are subsequently used by both the Message Handler and
Driverlib APIs to interact with the Message RAM. Hence, Message RAM configuration is a crucial step for MCAN
during module initialization, while such configuration is not required in DCAN. The MCAN module addresses the
Message RAM in 32-bit words. Consequently, all sections are of sizes that are multiples of 32-bit words.

Table 5-1. Element Size Vs Size of Data Packets
MCAN_RXESC.RBDS/
MCAN_RXESC.F0DS/
MCAN_RXESC.F1DS/
MCAN_TXESC.TBDS

(Corresponding to Rx Buffer, Rx FIFOs
and Tx Buffer, respectively) Data Field (bytes)

FIFO Element Size (or) Buffer Element
Size [RAM words]

000 8 4

001 12 5

010 16 6

011 20 7

100 24 8

101 32 10

110 48 14

111 64 18

Macros are available in C2000ware examples which automatically calculate the starting address for each section
when the number and size of elements are set by the user. This configuration can be successfully utilized in
any application. Multiple valid configurations are possible and there is not a single "correct" configuration. Note
that the MCAN module does not check for invalid configurations. It is the responsibility of the user to verify that
sections do not overlap each other or exceed the available RAM.

www.ti.com Message RAM Configuration

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 9

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 5-1. MCAN Message RAM Macros

Figure 5-2. MCAN Message RAM Initialization

Message RAM Configuration www.ti.com

10 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

6 Interrupt handling
From a CPU level (PIE, IFR and INTM), interrupt handling is identical between DCAN and MCAN. However,
interrupt handling differs significantly at the module level. Table 6-1 summarizes the basic differences in interrupt
handling between DCAN and MCAN modules:

Table 6-1. Interrupt Handling in DCAN and MCAN
Category DCAN MCAN

Interrupt sources Error, Status and Transmission/Reception
interrupts corresponding to each message
object

30 internal interrupt sources (specified in
table below)

Global interrupt registers Registers to enable, read and clear global
interrupts present

Corresponding register is absent

Configuring reception interrupt Reception interrupt can be separately
enabled by setting RxIE bit in each Message
Object as required

Interrupt can be enabled or disabled for any
new message being received in dedicated Rx
Buffer.

Determining source of receive interrupt Value read from register CAN_INT
corresponds to Message Object Number
where message has been received in

Interrupt only denotes that a new message
has been received in Rx Buffer. Value read
from MCAN_NDATx registers corresponds to
Rx Buffer element number where message
has been received.

Rx FIFO interrupts No separate interrupt functionality supported Additional interrupt sources available
including New Message in FIFO, FIFO
being full and FIFO Watermark Reached
(Watermark can be configured during
Message RAM configuration to generate an
interrupt when FIFO is filled to a certain level
to serve the application needs)

Configuring transmission interrupts Transmission interrupt can be separately
enabled by setting TxIE bit in each Message
Object as required

Transmission interrupt can be separately
enabled by configuring the register
MCAN_TXBTIE, where each bit corresponds
to a separate Tx Buffer Element.

Determining Source of transmission interrupt Value read from register CAN_INT
corresponds to Message Object Number
where message has been transmitted from

Interrupt only denotes that a transmission
has been completed. Value read from the
MCAN_TXBTO register corresponds to the
Tx Buffer element number from which the
transmission has occurred.

6.1 MCAN Interrupt Sources
The different interrupt sources for MCAN have been documented in Table 6-2:

Table 6-2. MCAN Interrupt Sources
Interrupt Description
ARA Access to Reserved Address

PED Protocol Error in Data Phase

PEA Protocol Error in Arbitration Phase

WDI Watchdog

BO Bus-off

EW Warning Status

EP Error Passive

ELO Error Logging Overflow

BEU Bit Error Uncorrected

www.ti.com Interrupt handling

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Table 6-2. MCAN Interrupt Sources (continued)
Interrupt Description
BEC Bit Error Corrected

DRX Message Stored to Dedicated Rx Buffer

TOO Timeout Occurred

MRAF Message RAM Access Failure

TSW Timestamp Wraparound

TEFL Tx Event FIFO Element Lost

TEFF Tx Event FIFO Full

TEFW Tx Event FIFO Watermark Reached

TEFN Tx Event FIFO New Entry

TFE Tx FIFO Empty

TCF Transmission Cancellation Finished

TC Transmission Completed

HPM High Priority Message

RF1L Rx FIFO 1 Message Lost

RF1F Rx FIFO 1 Full

RF1W Rx FIFO 1 Watermark Reached

RF1N Rx FIFO 1 New Message

RF0L Rx FIFO 0 Message Lost

RF0F Rx FIFO 0 Full

RF0W Rx FIFO 0 Watermark Reached

RF0N Rx FIFO 0 New Message

6.2 DCAN Interrupt Handling
Device-level Interrupt Configurations:

1. Initialize PIE and PIE Vector Table. Enable Global and Real-time Interrupts.
2. Configure the interrupt handler in the PIE Vector Table. Enable interrupt in the interrupt controller.

Module-level Interrupt Configurations

1. Enable Error and Status interrupts, using the CAN Control Register (CAN_CTL). Enable Message Object
interrupts while setting up Message Objects individually.

2. Select interrupt line where each message object interrupt is to be routed using the register
(CAN_IP_MUX21), where each bit corresponds to a single message object.

3. Interrupt Service Routine (ISR) : Read Interrupt Register (CAN_INT) to determine the source of the interrupt
(status/error/particular message object). Clear the Interrupt by writing to CAN Error and Status Register
(CAN_ES) or by clearing the IntPnd bit in the corresponding Message Object. Clear the Global Interrupt Flag
for the corresponding Interrupt Line.

4. Acknowledge the interrupt via PIEACK.

Interrupt handling www.ti.com

12 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 6-1. DCAN Interrupt Initialization

www.ti.com Interrupt handling

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 13

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 6-2. DCAN Interrupt handling

Interrupt handling www.ti.com

14 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

6.3 MCAN Interrupt Handling
Device-level Interrupt Configurations:

1. Initialize PIE and PIE Vector Table. Enable Global and Real-time Interrupts.
2. Configure the interrupt handler in the PIE Vector Table. Enable interrupt in the interrupt controller.

Module-level Interrupt Configurations

1. Enable interrupt sources using the register (MCAN_IR), where each bit corresponds to a single interrupt
source. Enable interrupt lines as required using the register (MCAN_ILE).

2. Select interrupt lines where interrupt source is to be routed using the register (MCAN_ILS), where each bit
corresponds to a single interrupt source.

3. Interrupt Service Routine (ISR) : Read Interrupt Register (MCAN_IR) to determine the source of the interrupt
(any of the 30 individual interrupt sources). Clear the interrupt by writing to the same register. Clear the
interrupt line by writing to the register (MCANSS_EOI).

4. Acknowledge the interrupt via PIEACK.

Figure 6-3. MCAN Interrupt Initialization

www.ti.com Interrupt handling

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 15

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 6-4. MCAN Interrupt Handling

Interrupt handling www.ti.com

16 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

7 Transmitting data
The overall transmission process is largely identical between DCAN and MCAN modules. The differences stem
primarily from how the Message RAM is laid out and utilized. Also, MCAN frames can be longer and employ two
different bit-rates. Once configured appropriately, the module takes care of bit-rate switching and handling the
larger payload. No code intervention is needed at that point.

7.1 Basic Transmission Process
This section outlines the flow including the actions required and the registers involved in the process of
transmitting a frame using DCAN and MCAN.

7.1.1 Transmission with DCAN

1. Setup a transmit Message Object.
2. Write to the IFx registers which in turn writes the Message ID (ARBID), DLC and data to the Message Object

(and update Message ID, if warranted).
3. Set TXRQST bit in the IFx register (CAN_IFxCMD) to signal that Message Object is ready for transmission.
4. When bus is idle, Message Handler parses Message Objects ready for transmission and transmits the

highest priority Message available.

7.1.2 Transmission with MCAN

1. Initialize Transmit Buffer Element (defined as a structure).
2. Write Tx Message to Message RAM.
3. Set the bit corresponding to the Tx Buffer Element Number in the MCAN_TXBAR register (each bit

represents a separate buffer element) to signal that message is ready for transmission.
4. When bus is idle, Message Handler parses Buffer Elements ready for transmission and transmits the highest

priority Message available.

7.2 MCAN Vs DCAN Transmit Procedural Differences
Although the conceptual procedure for transmission is largely identical for DCAN and MCAN, Table 7-1 captures
the key differences between both modules:

Table 7-1. MCAN Vs DCAN Transmit Procedure
Category DCAN MCAN

Transmit Priority Numerically lowest Message Object (that is
ready for transmission) is transmitted first

Buffer containing numerically lowest
Message ID (among those ready for
transmission) is transmitted first

Buffer Type Only Transmit Message Object Transmit Buffers can be configured as
Dedicated Tx Buffers, Tx FIFO or Tx Queue

Writing/Updating Transmit Message Requires Writes to IFx registers Transmit Message can be updated by writing
directly to Message RAM using Driverlib APIs

www.ti.com Transmitting data

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 17

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 7-1. Transmission with DCAN

7.3 MCAN Transmit Concepts
This section outlines the additional features in MCAN.

• Each Tx Message can be configured to transmit in Classic CAN or CAN-FD mode
• Transmit Pause
• Transmit Cancellation
• Tx FIFO / Tx Queue

Within the Message RAM, the Tx Buffer space can have the following possible configurations:
1. Only Tx Buffers
2. Tx Buffers + Tx FIFO
3. Tx Buffers + Tx Queue

How to configure each of these sections has been displayed in Table 7-2 below:

Table 7-2. Message RAM Configuration for Various Tx Buffer Options
Tx Buffers Tx Buffers + Tx FIFO Tx Buffers + Tx Queue

txBufNum = BUFF_SIZE
(MCAN_TXBC.NDTB)
txFIFOSize = 0
(MCAN_TXBC.TFQS)

txBufNum = BUFF_SIZE
(MCAN_TXBC.NDTB)
txFIFOSize = FIFO_SIZE
(MCAN_TXBC.TFQS)
txBufMode = 0
(MCAN_TXBC.TFQM)

txBufNum = BUFF_SIZE
(MCAN_TXBC.NDTB)
txFIFOSize = QUE_SIZE
(MCAN_TXBC.TFQS)
txBufMode = 1
(MCAN_TXBC.TFQM)

Transmitting data www.ti.com

18 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

The differences in functionality and potential use cases for each of the sections have been specified in Table 7-3
below:

Table 7-3. Tx Buffers Vs Tx FIFO Vs Tx Queue Feature Comparison
Feature Tx Buffers Tx FIFO Tx Queue

Information directly available to
host (CPU)

Buffer Element number is known. Only Put and Get indices
can be read from a register
(MCAN_TXFQS)

Only Put and Get indices
can be read from a register
(MCAN_TXFQS)

Element transmitted first Element with lowest message ID Oldest Element Element with lowest message ID

Put Index / Get Index Not applicable Put index points to where the
most recent frame is stored.
Incremented with Add Transmit
Request.Get index points to the
oldest element, which is be
transmitted next.

Put index points to the lowest,
free buffer element (within the
queue), where the most recent
frame is stored. Updated with
Add Transmit Request.
Get index is always Zero

Transmission of multiple
messages with same ID

Element with lowest buffer
number is transmitted

Oldest Element is transmitted Element with lowest buffer
number is transmitted

Full Condition Not applicable In case FIFO is full, no message
can be written unless a requested
transmission is completed

In case queue is full, no message
can be written unless a requested
transmission is completed

Tx Cancellation Possible Not Possible Not Possible

Use Cases Advantage is that the application
knows which message ID is
stored in which buffer element
and hence, can be edited before
sending

Applications where frames have
to be transmitted in a specific
order, not following increasing
order of message IDs

Advantage is that buffer number
is automatically handled by the
Put index. Application need not
track which buffer is empty based
on the message ID priority

www.ti.com Transmitting data

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 19

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 7-2. Transmission with MCAN

Transmitting data www.ti.com

20 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

7.3.1 Tx Event FIFO

Tx Event FIFOs are defined structures which are stored within the Message RAM. The module can be
configured to have up to 32 elements.

While the Tx Buffer holds only the message to be transmitted, the transmit status (including the message ID and
timestamp) can be stored separately using the Tx Event FIFO. The Message Marker is copied from the Tx Buffer
to the Tx Event FIFO element to link the Tx Event to the Tx Event FIFO Element.

This is useful in applications with a dynamically managed transmit queue, where a Tx Buffer can be overwritten
with the new message immediately after a successful transmission without needing to save the transmit status
from the Tx Buffer itself. For more information on how to store Tx Event FIFO elements, see the example
available in C2000ware.

8 Receiving Data
Like transmission, reception is largely identical between DCAN and MCAN. The differences stem primarily from
how the Message RAM is laid out and utilized. Also, MCAN frames can be longer and employ two different
bit-rates.

8.1 Introduction to Reception
In DCAN Message RAM, there are 32 configurable Message Objects that can be used for either transmission
or reception. Receive Message Objects are used for storing received data. If needed by the application,
acceptance filtering can be enabled for one or more message object(s). CPU read and write accesses to the
Message RAM are done through three Interface Register (IFx) sets.

In MCAN, the Message RAM can be divided into sections to include Filter Elements, Rx Buffer Elements and
Rx FIFO Elements. Filter Elements can be configured to be used with acceptance filtering and also determine
where the corresponding matching frame is to be stored within the Message RAM. Rx Buffer and Rx FIFO are
sections where the received frames are stored, with both having their own set of registers and interrupts. This
structure provides flexibility to better serve different application needs. Message RAM can be read from directly
using Driverlib APIs.

8.2 Basic Reception Process
This section outlines the high level processes involved in configuration and receiving frames using both DCAN
and MCAN.

8.2.1 DCAN Reception

1. Configure Receive Message Object: This involves writing the Message IDs (ARBID) and if needed, masking
for frames that are to be received.

2. For each received frame, the module checks against the Receive Message Objects in ascending order. On
the first match, the frame is stored in the corresponding Message Object.

3. Either by polling or using interrupts, ascertain the reception of new data. For polling, there is a bit
corresponding to each receive message object in the register CAN_NDAT_21. For using Interrupts, the
procedure has been outlined in the corresponding section.

4. Use one of the IFx Registers to read the data from the received frame.

www.ti.com Transmitting data

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 21

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 8-1. Reception with DCAN

Receiving Data www.ti.com

22 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

8.2.2 MCAN Reception

1. Configure Filter Element Size (total number), Rx Buffer size and Rx FIFO size as well as the Element Size
for both Buffer and FIFO. Element Size can be configured based on the estimated data size per frame.
These steps are completed as part of the Message RAM configuration. Configure Filter Elements which
includes setting the Message IDs / filtering conditions desired, along with configuring where the matching
frame for each corresponding Filter Element is stored (among Rx Buffer and Rx FIFO 0/1).

2. For each received frame, the module checks against filter elements (standard or extended, depending on the
received frame) in ascending order. On getting the first match, the frame is stored as configured into the filter
element. Non-matching frames can also be configured to be stored in Rx FIFO 0/1.

3. Either by polling or using interrupts, ascertain the reception of new data. For polling, there is a bit
corresponding to each possible Rx Buffer Element in the registers MCAN_NDAT1 and MCAN_NDAT2.
Consequently, for a new message in Rx FIFO, the MCAN_RXFxS.FxFL bits can be checked to get the fill
level. For using Interrupts, the procedure has been outlined in the corresponding section.

4. Use Driverlib APIs to read the data from the received frame.

8.3 Filter Elements
Filter Elements are defined structures, which need to be configured in the Message RAM to determine which
frames are to be received and where these frames need to be stored within the Message RAM.

Standard Filter Elements are used to store Standard ID frames, and the module can be configured to have
up to 128 elements. Extended Filter Elements are used to store Extended ID frames, and the module can
be configured to have up to 64 elements. The structure for both Standard and Extended Filter Elements is
identical except for the Message ID type. The following description given for Standard Filter Elements is valid for
Extended Filter Elements as well.

The module has certain Global Filter Configurations (set in the MCAN_GFC register during initialization) which
determines whether to accept or reject remote frames and non-matching frames (independent configurations for
both Standard and Extended IDs).

Each received frame is sequentially compared to the list of configured Filter Elements (Standard ID frames
are compared to Standard Filter Elements and so on). On getting a match, based on the configuration of the
corresponding filter element, the frame is accepted or rejected, and is stored in the Message RAM as configured
(if accepted).

Note:

MCAN has a separate register (MCAN_XIDAM) that can be used as an Extended ID "AND" Mask. By default,
the register (mask) has all bits set to one, which disables the mask.

However, during initialization, on enabling the mask, all received extended IDs are ANDed with this mask before
the filter list is executed. This register is intended for masking of 29-bit IDs in SAE J1939.

By setting Extended Filter Type (eft) = 0x3 for a particular Extended Filter Element, a Range Filter can be
implemented such that the Extended ID AND Mask is not applied.

8.3.1 Filter Element Structure

Standard (or Extended) Filter Elements are defined by the following fields:

• sft (or eft) determines what kind of filter is to be implemented.
• sfec (or efec) determines where the accepted frame is to be stored or if the frame is to be rejected.
• sfid1 and sfid2 (or efid1 and efid2) determine which message IDs are matching.

www.ti.com Receiving Data

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 23

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

The individual functions can vary based on the filter type as shown in Table 8-1 and Table 8-2:

Table 8-1. Standard Filter Element Parameters
Parameter Description
Standard Filter Type (SFT) 0x0 : Range Filter from SFID1 to SFID2 (SFID1<= SFID2)

0x1 : Dual ID Filter for SFID1 or SFID2
0x2 : Classic Filter: SFID1 = Filter; SFID2 = Mask
0x3 : Filter Element Disabled

Standard Filter Element Configuration (SFEC) 0x0 : Disable Filter Element
0x1 : Store in Rx FIFO 0, if filter matches
0x2 : Store in Rx FIFO 1, if filter matches
0x3 : Reject ID, if filter matches
0x4 : Set Priority, if filter matches
0x5 : Set Priority and store in Rx FIFO 0, if filter matches
0x6 : Set Priority and store in Rx FIFO 1, if filter matches
0x7 : Store in Rx Buffer, ignore SFT [1:0] field

Table 8-2. Extended Filter Element Parameters
Parameter Description

Extended Filter Type (EFT) 0x0 : Range Filter from EFID1 to EFID2 (EFID1<= EFID2)
0x1 : Dual ID Filter for EFID1 or EFID2
0x2 : Classic Filter: EFID1 = Filter; EFID2 = Mask
0x3 : Range Filter from EFID1 to EFID2 (EFID1<= EFID2), XIDAM
mask not applied

Extended Filter Element Configuration (EFEC) 0x0 : Disable Filter Element
0x1 : Store in Rx FIFO 0, if filter matches
0x2 : Store in Rx FIFO 1, if filter matches
0x3 : Reject ID, if filter matches
0x4 : Set Priority, if filter matches
0x5 : Set Priority and store in Rx FIFO 0, if filter matches
0x6 : Set Priority and store in Rx FIFO 1, if filter matches
0x7 : Store in Rx Buffer, ignore EFT field

An example for setting up Standard Filter Elements is shown below:

If the application requires filter configuration such that

• Frame with Message ID = 0x04 must be stored in Rx Buffer Element 5 (buffer element range is from 0 to 63)
• Frame with Message IDs 0x371, 0x375, 0x379, 0x37D must be stored in Rx FIFO 0
• Frame with Message IDs 0xF4 and 0x23 must be rejected
• Frame with Message IDs in the range [0x734 to 0x75A] must be stored in Rx FIFO 1

In that case, the Standard Filter Elements to be added is shown in Table 8-3 :

Table 8-3. Standard Filter Element Configuration

Filter Element Number
(filtNum)

Standard Filter Type
(sft)

Standard Filter Element
Configuration

(sfec)
Standard Filter ID 1

(sfid1)
Standard Filter ID 2

(sfid2)

0 xx = Don't care 111 = Store in Rx Buffer 0x04 0x05

1 10 = Classic Bit Mask
Filter

001 = Store in Rx FIFO 0 0x371 (filter) 0x0C (mask)

2 01 = Dual ID 011 = Reject 0xF4 0x23

3 00 = Range Filter 010 = Store in Rx FIFO 1 0x734 0x75A

When accessing any Standard Filter Element, the address is the starting address initialized to the register
(MCAN_SIDFC.FLSSA) during Message RAM configuration plus the word size of the filter element times the
index of the filter element. However, while evaluating any received frame against the filter list, the module
only checks filters up to the number initialized to the register (MCAN_SIDFC.LSS) during Message RAM
Configuration.

Receiving Data www.ti.com

24 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Note: Ensure that the Filter Element index does not exceed the initialized value (MCAN_SIDFC.LSS); otherwise
the filter element reference can malfunction.

Figure 8-2. MCAN Filter Configuration

8.4 Rx Buffer
Rx Buffer Elements are defined structures which are stored within the Message RAM. The module can be
configured to have up to 64 elements.

The starting address of the Rx Buffer Section is stored in MCAN_RXBC.RBSA register and subsequent regions
within this section are calculated based on the Rx Buffer Element number in consideration by the module.

8.4.1 Receiving in Rx Buffer

In case of filtering for Rx Buffers, a filter element can be configured to store a frame with matching ID defined by
Standard ID1, in a Rx Buffer Element for which the number is defined by Standard ID2. Consequently, there has
to be one Filter Element (std/ext) for each Rx Buffer Element. It is NOT possible to use any filter types to store
frames in the Rx Buffer.

An interrupt can be generated when a new message is received in a dedicated Rx Buffer. There are two
registers MCAN_NDAT1 and MCAN_NDAT2, with a bit corresponding to each of the possible 64 Rx Buffer
elements, which is set on receiving a new frame in the particular buffer element. This new message can be read
from the Message RAM using Driverlib API after which the New Data Flag needs to be cleared. As long as the
New Data Flag is set, the Rx Buffer Element does not receive new data, and the corresponding filter element is
disabled.

www.ti.com Receiving Data

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 25

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

Figure 8-3. Reception using Rx Buffer

8.5 Rx FIFO
Rx FIFO Elements are structurally identical to Rx Buffer Elements, and are also stored in the Message RAM.
The module has two Rx FIFOs (Rx FIFO 0 and Rx FIFO 1) which can be individually configured to have up to
64 elements. The primary difference between Rx Buffer Elements and Rx FIFO Elements is in how the module
accesses them.

The behaviour of the Rx FIFOs is determined by the Put and Get indices. These indices are maintained by the
module in specific registers (MCAN_RXFxS). The Put index refers to the FIFO Element number where a newly
received frame needs to be stored in the Message RAM. The Get index refers to the FIFO Element number from
where the application needs to read the data from the Message RAM.

As a result of this structure, it is not necessary for the application to retrieve the data from a Rx Buffer Element
each time a frame is received and clear the corresponding New Data Flag to receive the next matching frame in
the same Rx Buffer Element. Instead, the application can read multiple received frames in one go.

The starting address for each FIFO section is stored in MCAN_RXFxC.FxSA register and the subsequent
regions within this section are calculated based on the Put and Get indices by the module.

The Put index is incremented (automatically by the module) every time a new message is received into the
FIFO, whereas, the Get index needs to be incremented by the application every time a message is read by the
application. The Fill level of the FIFO, which translates to the number of messages in the FIFO to be read by the
application, is determined by (Put Index - Get Index).

There are two modes for FIFOs which are differentiated on the basis of their behaviour when a new message
is received when the FIFO is full. First is FIFO blocking mode, which means that when the Rx FIFO is full,
no messages are stored in the Rx FIFO, unless at least one of the messages currently stored has been read
by the application. In case a new message is received, there is an interrupt flag (MCAN_IR.RXFxL) that is set
denoting a lost message. Second is the FIFO overwrite mode, which means that when the Rx FIFO is full, the
next accepted message overwrites the oldest FIFO message.

The Rx FIFO mode is set during initialization as part of the Message RAM configuration.

Receiving Data www.ti.com

26 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

8.5.1 Receiving in Rx FIFO

Filter configurations to store a matching frame into Rx FIFO have been described above.

Note: The following discussion can be applied separately to either of the Rx FIFOs.

There are a number of ways to read a new message. Separate interrupts can be generated when any new
message is received in a FIFO element or when the FIFO becomes full (size of the FIFO set during Message
RAM configuration). To avoid losing data on account of the FIFO being full, it is also possible to set a watermark
(during Message RAM configuration). When the FIFO fill level reaches the set watermark, an interrupt is
generated which can be used to read the entire FIFO (see Figure 8-4).

The new message (or messages) can be read directly from the Message RAM using Driverlib API after which
the Get index needs to be incremented. This can be done by writing the index of the last element read to the
register MCAN_RXFxA, which is done using a Driverlib API as shown below.

To read multiple messages from the FIFO, the same code can be called in a loop.

Figure 8-4. Reception with Rx FIFO

8.6 Receiving High Priority Messages
Certain Filter Elements can be configured to treat matching frames as high priority messages. Note that the
messages themselves are indisinguishable (identical) from other messages, but the module reads them slightly
differently. Messages can only be read from a FIFO in the order in which the messages were received. However,
priority messages can be read directly. This is possible because there is a separate register (MCAN_HPMS)
that stores information related to the High Priority Message including whether the message is Standard ID or
Extended ID, what is the filter index for the matching filter element, in which FIFO the message is stored and the
corresponding index within the FIFO.

For more information on how to receive High Priority Messages, please refer to the example available in
C2000ware.

www.ti.com Receiving Data

SPRAD59 – OCTOBER 2023
Submit Document Feedback

DCAN to MCAN Migration Guide 27

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

9 Avoiding network errors
In a properly designed/configured network, communication errors are rare. Common reasons for errors are :

1. Inadequate oscillator accuracy: It is important that the required accuracy is maintained in the entire operating
temperature range of the application.

2. Improper sampling-point (SP) selection: SP must be optimal and neither too-early nor too late. The SP must
be chosen based on the oscillator accuracy and propagation delay introduced by the transceivers (and any
galvanic isolation, if used) and the end-to-end bus length.

3. Mismatched bit-rates between nodes: This can happen, among other things, due to inadequate oscillator
tolerance.

4. Electromagnetic interference (EMI): If the noise is transient, the bus recovers on its own once the
disturbances vanish. That is how the protocol is designed.

Note that bus-off is a severe error condition. You must investigate the root-cause of the errors as explained
above.

10 References
• Texas Instruments: How Signal Improvement Capability Unlocks the Real Potential of CAN-FD Transceivers
• Texas Instruments: Programming Examples and Debug Strategies for the DCAN Module
• Texas Instruments: Getting Started with the MCAN (CAN FD) Module

Avoiding network errors www.ti.com

28 DCAN to MCAN Migration Guide SPRAD59 – OCTOBER 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLLA581
https://www.ti.com/lit/pdf/SPRACE5
https://www.ti.com/lit/pdf/SPRACU9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD59
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD59&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Key Differences Between DCAN and MCAN
	3 Module Initialization
	3.1 DCAN Initialization
	3.2 MCAN Initialization
	3.3 Initialization sequence
	3.4 Code Snippets for Module Initialization

	4 Bit Timing Configuration
	5 Message RAM Configuration
	6 Interrupt handling
	6.1 MCAN Interrupt Sources
	6.2 DCAN Interrupt Handling
	6.3 MCAN Interrupt Handling

	7 Transmitting data
	7.1 Basic Transmission Process
	7.1.1 Transmission with DCAN
	7.1.2 Transmission with MCAN

	7.2 MCAN Vs DCAN Transmit Procedural Differences
	7.3 MCAN Transmit Concepts
	7.3.1 Tx Event FIFO

	8 Receiving Data
	8.1 Introduction to Reception
	8.2 Basic Reception Process
	8.2.1 DCAN Reception
	8.2.2 MCAN Reception

	8.3 Filter Elements
	8.3.1 Filter Element Structure

	8.4 Rx Buffer
	8.4.1 Receiving in Rx Buffer

	8.5 Rx FIFO
	8.5.1 Receiving in Rx FIFO

	8.6 Receiving High Priority Messages

	9 Avoiding network errors
	10 References

