
Application Note
ADC Oversampling

Omer Amir and Joseph Casuga

ABSTRACT

C2000™ real-time microcontrollers offer analog-to-digital converters (ADCs) that are widely used across
numerous applications from controlling motor to reading sensors. There are times when a customer design
demands a resolution higher than the ADC of the selected device. This application note describes how an
oversampling method can be incorporated to increase ADC resolution past the currently available number of
bits. This can help reduce the cost in building a system by utilizing lower resolution ADCs to oversample a
signal and obtain a higher resolution result. Detailed instructions are provided and have been tested on the
TMDSCNCD280039C device, using SysConfig for the device initialization.

Table of Contents
1 Introduction...2
2 Theory..2
3 Hardware... 3
4 Software...4
5 Results...8
6 Summary..11
7 References...11

List of Figures
Figure 3-1. Overall Hardware Setup.. 4
Figure 3-2. Wiring Setup..4
Figure 4-1. SoC Flow Diagram for Oversampling..6
Figure 4-2. Timings for Sampling a Signal...7
Figure 4-3. Incorrect Timings for Sampling a Signal..7
Figure 5-1. Baseline Sampling FFT Plot..9
Figure 5-2. 2X Oversampling FFT Plot.. 9
Figure 5-3. 4X Oversampling FFT Plot.. 10
Figure 5-4. 8X Oversampling FFT Plot.. 10
Figure 5-5. 16X Oversampling FFT Plot.. 11

List of Tables
Table 2-1. Relationship Between Oversampling Factor, SNR, and Extra Bits of Resolution... 3
Table 4-1. Oversampling Time...8
Table 5-1. ADC Oversampling Results.. 8

Trademarks
C2000™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRAD55 – MARCH 2023
Submit Document Feedback

ADC Oversampling 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

1 Introduction
Analog-to-Digital Converter (ADC) modules have a discrete number of bits available to digitize an analog signal,
or resolution. An ideal ADC faithfully reproduces the digitized signal to within the specified resolution. However,
in the real world, various electrical imperfections and noise factors contribute to reduce the realized signal
resolution below the specified value. The realized signal resolution when these imperfections are considered is
referred to as the effective number of bits, or ENOB.

ADC signal oversampling is a technique that can overcome these inherent imperfections, and achieve a
higher ENOB than is nominally possible at the baseline for the device. This application report discusses the
purpose behind oversampling, and provides the following details of an oversampling example: the theory, the
hardware and software setup, and the measured results. The example provided in this application note uses a
TMDSCNCD280039C device, with a 12-bit ADC.

2 Theory
The goal of software oversampling is to increase ENOB by reducing the noise observed in the signal. Software
oversampling performs multiple conversions on the same input signal and accumulates the digital values to
attain an ENOB higher than the ADC's inherent ENOB. The result's precision increases, depending on how
much oversampling takes place. This accuracy can be demonstrated by measuring a varying input signal to
determine the signal's major frequency. The amount of oversampling possible is theoretically limited to the data
width of the variable used to store the conversion result. For instance, a 16-bit result word limits you to 16X
oversampling on a 12-bit ADC, with a maximum accumulated value of 65535.

In addition to data size constraints, the amount of oversampling is limited by the relationship between the
throughput of the ADC and the fundamental frequency of the input signal, as the number of oversampled
conversions per second cannot fall below the Nyquist rate. This also means that the oversampling factor is
limited by the control loop frequency needed to achieve the system performance requirements.

The size limit occurs because oversampling accumulates the results, which invariably requires more memory
than the original result because there can be an overflow from the addition. The accumulated values are not
averaged since this effectively removes the additional precision that is obtained. As such, averaging maintains
the size of the stored result and the reduced noise, but this does not affect the observed ENOB of the result to
any significant degree.

Oversampling with accumulation improves noise reduction in the final value obtained, but the ENOB does not
increase as much if there is significant noise affecting the signal. There are several board layout guidelines
that, if followed, can help to minimize significant sources of noise in analog signals for ADC conversion. These
include:

• Verifying no signal crossing between analog and digital signals
• Having separate layers for analog and digital signals
• Having a dedicated return ground for analog signals that are not shared with digital
• Isolating the analog region from the digital region

For more details about good hardware design for C2000 ADCs, see Section 3.

A Fast Fourier Transform (FFT) is used in this document to process the oversampled ADC results stored in
memory. The FFT plot gives us a view of the signal noise and harmonic distortions that affect the observed
major frequency, and as such diminish the ENOB. These values are quantified from the FFT data and used
to compute an approximate ENOB value. For the purpose of testing, the FFT was computed on ADC data
exported from RAM. Before the ADC results have an FFT performed on them, windowing is required on data
stored in memory to avoid creating artifacts in the signal. This is because the start and end points do not
always line up to form a complete waveform. The windowing function used in this application note is the 7-term
Blackman-Harris function. The FPU DSP library also has the capability of performing fast Fourier transforms on
data in stored memory using windowing. The different windowing functions available can be viewed in the FFT
module within SysConfig, or within the directory C2000Ware_X_XX_XX_XX\libraries\dsp\FPU\c28\include\fpu32
as files labeled fpu_fft_<name>.h.

Introduction www.ti.com

2 ADC Oversampling SPRAD55 – MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

The magnitude of noise present in a signal can be expressed using the Signal-to-Noise Ratio (SNR), and the
harmonics observed in the signal can be expressed using Total Harmonic Distortion (THD). The noise and
harmonics present in the sampled signal reduce the ENOB of the result. Table 2-1 shows the theoretical ENOB
increase and SNR improvement possible with various oversampling factors. For more data on the theory behind
the numbers in this table, see General Oversampling of MSP ADCs for Higher Resolution.

Table 2-1. Relationship Between Oversampling Factor, SNR, and Extra Bits of Resolution
Oversampling Factor SNR Improvement (dB) Extra Bit of Resolution

2 3 0.5

4 6 1

8 9 1.5

16 12 2

32 16 2.5

64 18 3

128 21 3.5

256 24 4

512 27 4.5

1024 30 5

2048 33 5.5

4096 36 6

In the example shown in this application note, each oversampling factor from baseline to 16X is tested using a
10 kHz sine wave input signal. An FFT plot is used to display the results here because the plot visualizes the
signal to noise ratio, harmonic distortion, and accuracy of the sampling. The noise frequencies present in the
signal can be observed as minor peaks, which are far below the peak of the DC and signal frequency. Excluding
the peak at 0, which is the DC component of the signal, the highest peak is the closest to the input signal's
frequency. The more diminished these are relative to the fundamental signal amplitude, the higher the resulting
ENOB.

3 Hardware
For the purpose of testing ADC oversampling, a TMDSCNCD280039C controlCARD was used to convert the
input sine wave into digital values. To configure the reference voltage VREF and JTAG for the controlCARD,
see the TMS320F280039C controlCARD Information Guide. To keep the setup simple while reducing possible
sources of error, the internal 2.5 V reference was used. If the external VREF is used, extra steps must be
taken. For more information regarding VREF, see the Voltage Reference chapter in the ADC chapter of the
TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.

The hardware for ADC sampling can reduce environmental and signal noise when configured properly. In the
context of evaluating oversampling performance, equipment can be a source of noise. Use signal sources with
a high resolution and follow practices for reducing noise in the system for a validation setup. For this application
note, the Agilent AG33522A Arbitrary Waveform Generator (AWG) was used as the signal source. In general,
a signal source with a higher resolution than the ADC produces the best results. To reduce possible deviations
in obtained ENOB values, follow the best layout practices for analog circuits. ADC input conditioning also plays
a role in improving the accuracy of ADC itself. For details on input conditioning, see ADC Input Evaluation for
C2000™ MCUs. For PCB layout design recommendations, see Hardware Design Guide for F2800x C2000™
Real-Time MCU Series.

www.ti.com Hardware

SPRAD55 – MARCH 2023
Submit Document Feedback

ADC Oversampling 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAA694
https://www.ti.com/lit/pdf/SPRUIZ4
https://www.ti.com/lit/pdf/spruiw9
https://www.ti.com/lit/pdf/SPRACT6
https://www.ti.com/lit/pdf/SPRACT6
https://www.ti.com/lit/pdf/SPRACZ9
https://www.ti.com/lit/pdf/SPRACZ9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

Figure 3-1. Overall Hardware Setup

Figure 3-2. Wiring Setup

4 Software
The example used for this application note utilizes SysConfig with driverlib for the configuration of the ADC,
ePWM, and other peripherals. Within the program code, the ADC should be set up to minimize overhead such
that more time can be used between conversions to do a control loop. For the example used in this application
note, the SOCs are configured in burst mode with round-robin priority, so that the SOCs are triggered together
and accumulated without missing a value when oversampling. An interrupt is set up to trigger once the last SOC,
SOC15 for F28003x, reaches the end of conversion. The interrupt runs the corresponding ISR, which stores the
ADC result and accumulate multiple SOC results if oversampling is enabled.

Software www.ti.com

4 ADC Oversampling SPRAD55 – MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

The ePWM triggers the SOCs here, however software triggers and CPU timer triggers are also available.
Take care when choosing the period of the trigger to maintain uniform sampling of the SOCs, and appropriate
conversion time with respect to the rest of the control loop. Once the last SOC in the burst sequence issues
an end-of-conversion signal, the ISR executes the control loop. In this example, the control loop consists of a
simple accumulation function for oversampling and storing the results. Avoid averaging the values because this
effectively reduces measurement precision by discarding information contained in the lower bits of the result.
The final result is stored in memory before the next burst is triggered.

Below is an example of baseline sampling with the burst ISR setup:

__interrupt void adcA1ISR(void)
{
 //
 // Clear the interrupt flag
 //
 ADC_clearInterruptStatus(ADCA_BASE, ADC_INT_NUMBER1);

 //
 // 1X Oversampling
 //
 lv_results[nloops++] = ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER0);

 //
 // Check if overflow has occurred
 //
 if(true == ADC_getInterruptOverflowStatus(ADCA_BASE, ADC_INT_NUMBER1))
 {
 ADC_clearInterruptOverflowStatus(ADCA_BASE, ADC_INT_NUMBER1);
 ADC_clearInterruptStatus(ADCA_BASE, ADC_INT_NUMBER1);
 }

 //
 // Check if all results are stored
 //
 if(nloops >= numBins)
 {
 //
 // Disable ADC interrupt
 //
 ADC_disableInterrupt(myADC0_BASE, ADC_INT_NUMBER1);
 ESTOP0;
 }

 //
 // Acknowledge the interrupt
 //
 Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP1);
}

An example of oversampling a signal at 8X with ISRs is as follows:

__interrupt void adcA1ISR(void)
{
 //
 // Clear the interrupt flag
 //
 ADC_clearInterruptStatus(ADCA_BASE, ADC_INT_NUMBER1);

 //
 // Accumulate 8 ADC results to oversample 8X
 //
 lv_results[nloops++] = (ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER0) +
ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER1) +
 ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER2) +
ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER3) +
 ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER4) +
ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER5) +
 ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER6) +
ADC_readResult(myADC0_RESULT_BASE, ADC_SOC_NUMBER7));

 //
 // Check if overflow has occurred
 //
 if(true == ADC_getInterruptOverflowStatus(ADCA_BASE, ADC_INT_NUMBER1))
 {

www.ti.com Software

SPRAD55 – MARCH 2023
Submit Document Feedback

ADC Oversampling 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

 ADC_clearInterruptOverflowStatus(ADCA_BASE, ADC_INT_NUMBER1);
 ADC_clearInterruptStatus(ADCA_BASE, ADC_INT_NUMBER1);
 }

 //
 // Acknowledge the interrupt
 //
 Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP1);
}

The appropriate interrupts can be disabled once the intended number of results have been stored, or else the
ADC can continue to convert the analog signal. The basic flow of using an ePWM to trigger the burst conversion
for oversampling is shown in Figure 4-1.

Figure 4-1. SoC Flow Diagram for Oversampling

Depending on the control loop for the specific application, more time may be required than what the max
sampling rate of the ADC allows. To solve this, increase the ePWM time base to allow a longer conversion
time, giving the control loop more time to complete. This reduces the maximum frequency that can be properly
measured, since the ADC does not trigger as often.

The input frequency affects the oversampling factor that can be used. For signals that are at a higher frequency
or need to be sampled at a higher rate, a lower oversampling factor is necessary because of the software
overhead required. To determine the maximum input frequency where data is not likely to be missed, the number
of cycles needed for the control loop and oversampling are needed. The control loop cycle count includes any
user-related operations such as ISR handling or processing that need to happen every time new samples are
obtained. Figure 4-2 shows where these timings come into play when sampling a signal. In this image, the
oversampling and control loop time includes system clock cycles for interrupt latency and ISR execution. Notice
that there is some buffer time between the end of the control loop and the arrival of the next ADC trigger, so that
processing does not prevent a trigger from occurring and data is not missed. Figure 4-3 shows that when the
total time for conversions, oversampling, and the control loop exceeds the burst trigger period, data is missed.
The solution for this is to extend the period, which in this example would require extending the ePWM time base
to move the trigger further.

Software www.ti.com

6 ADC Oversampling SPRAD55 – MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

Table 4-1 shows the timings of the oversampling used in this application note, which includes time for reading
results from the ADC register, accumulating values if necessary, and storing the result in RAM. The timings for
this table were taken with only the --opt_for_speed = 5 for optimization, so the timings are not necessarily the
minimum achievable values. For more details on how to improve the speed of a program, see the C2000 C28x
Optimization Guide.

If the control loop timing is not known, a simple GPIO toggle is accurate enough to determine the period of this
loop. The function below can be used to route the SOC A event trigger to the corresponding external pin. This
can be used to verify the event is triggering properly, and that the ISR has sufficient time to run before the burst
gets triggered again.

SysCtl_enableExtADCSOCSource(SYSCTL_ADCSOC_SRC_PWM1SOCA)

Figure 4-2. Timings for Sampling a Signal

Figure 4-3. Incorrect Timings for Sampling a Signal

www.ti.com Software

SPRAD55 – MARCH 2023
Submit Document Feedback

ADC Oversampling 7

Copyright © 2023 Texas Instruments Incorporated

https://software-dl.ti.com/C2000/docs/optimization_guide/index.html
https://software-dl.ti.com/C2000/docs/optimization_guide/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

Table 4-1. Oversampling Time
Oversampling Factor Oversample Time (clock cycles)

1X 9

2X 52

4X 127

8X 272

16X 551

Take for example a control loop within an interrupt service routine (ISR) that takes about 300 cycles to run.
Measuring a sine wave at 16X oversampling with ISR uses 851 cycles. If the sine wave is 10 kHz, based on
the Nyquist theorem, the minimum sampling rate is at least 20 kSPS (kilo-samples per second). The table in the
ADC Timing Diagrams chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual
shows how tLAT increases with larger ADC clock prescale values. SYSCLK is the system clock frequency. This
is 120 MHz by default for the TMDSCNCD280039C. For an ADC clock of 60 MHz on the TMDSCNCD280039C,
the clock prescaler divides SYSCLK by 2, and the value for tLAT is 23 SYSCLK cycles. FSample is the rate in
samples per second required for a specific application, which is 20 kSPS here.

ACQPSMAX = SYSCLKFSample − tLAT – 1 (1)

CyclesSample = tLAT + ACQPS + 1 (2)

Maximum Input Frequency = SYSCLK2 × CyclesSample + CyclesControl Loop + CyclesOversample (3)

In this example the maximum acquisition window size (ACQPS), based on the above formula, is 5,976. This
value is very large only because the sampling rate does not have a very high requirement. Having a maximum
ACQPS value is important so that there is sufficient time to sample an input without missing significant data
points, as the ACQPS itself is determined by the input network. For more information on calculating ACQPS
values, see the Choosing an Acquisition Window Duration section within the ADC chapter in TMS320F28003x
Real-Time Microcontrollers Technical Reference Manual. The maximum input frequency measurable with this
example setup is about 67 kHz, given the Nyquist rate. For comparison, the data collected in this application
note was sampled at about 3 MSPS, which can only be achieved by using an ACQPS value of 16 or less. The
maximum input frequency measurable using this sample rate was about 74 kHz, given that the ISR time was
about 211 cycles.

5 Results
The results of ADC oversampling are shown in Table 5-1. The baseline ENOB for this data is noticeably lower
than the value provided in the device data manual because the setup used for this example was simplified,
without buffering the input to the ADC, using a reliable external voltage reference, or otherwise optimizing to
reduce noise in the system. Overall, the ENOB increased by approximately 1.56, which is close to the theoretical
amount of increase in resolution. This shows that the accuracy of an ADC can be increased without changing
hardware and adding extra cost to the bill of materials. With an increase in oversampling, the amount of time
required to sample the ADC also increases. This can have diminishing returns, depending on how time-sensitive
activities within the rest of the system are. For more details on this, see Table 4-1.

Table 5-1. ADC Oversampling Results
Oversampling Factor ENOB THD SNR FFT Result

1X 10.81 -84.02 66.91 Figure 5-1

2X 11.18 -83.99 69.24 Figure 5-2

4X 11.51 -84.41 71.26 Figure 5-3

8X 11.91 -86.29 73.70 Figure 5-4

16X 12.37 -86.51 76.63 Figure 5-5

Results www.ti.com

8 ADC Oversampling SPRAD55 – MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruiw9
https://www.ti.com/lit/pdf/spruiw9
https://www.ti.com/lit/pdf/spruiw9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

Figure 5-1 through Figure 5-5 show the FFT plots for each oversampling factor.

Figure 5-1. Baseline Sampling FFT Plot

Figure 5-2. 2X Oversampling FFT Plot

www.ti.com Results

SPRAD55 – MARCH 2023
Submit Document Feedback

ADC Oversampling 9

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

Figure 5-3. 4X Oversampling FFT Plot

Figure 5-4. 8X Oversampling FFT Plot

Results www.ti.com

10 ADC Oversampling SPRAD55 – MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

Figure 5-5. 16X Oversampling FFT Plot

6 Summary
This application note covered the effects of oversampling with an ADC using software methods, and how
oversampling can increase the effective number of bits (ENOB). The theoretical ENOB increases by 0.5 every
time the oversampling factor is doubled. The observed ENOB increase is slightly lower due to system noise
limitations. This can be further improved by adding a buffer to the ADC input and using an external VREF
source. Oversampling does decrease the rate at which individual samples are read, since the oversampling
takes up additional time within the control loop. There is also an increase in time to collect results from the ADC,
depending on the oversampling factor.

7 References
• Texas Instruments: General Oversampling of MSP ADCs for Higher Resolution
• Texas Instruments: ADC Input Evaluation for C2000™ MCUs
• Texas Instruments: Hardware Design Guide for F2800x C2000™ Real-Time MCU Series
• C2000 C28x Optimization Guide
• Texas Instruments: TMS320F28003x Real-Time Microcontrollers Technical Reference Manual

www.ti.com Summary

SPRAD55 – MARCH 2023
Submit Document Feedback

ADC Oversampling 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAA694
https://www.ti.com/lit/pdf/SPRACT6
https://www.ti.com/lit/pdf/SPRACZ9
https://software-dl.ti.com/C2000/docs/optimization_guide/index.html
https://www.ti.com/lit/pdf/spruiw9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD55
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD55&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Theory
	3 Hardware
	4 Software
	5 Results
	6 Summary
	7 References

