
SPRAB20 – January 2009
Submit Documentation Feedback

Inter-Core Communication on TMS320C6474 1

Jelena Nikolic-Popovic

Application Report
SPRAB20 – January 2009

Inter-Core Communication on TMS320C6474

ABSTRACT

Inter-core (also called Inter-CPU or Inter-Processor) communication on the C6474 multi-
core DSP devices can be accomplished using the on-chip inter-processor
communication (IPC) module. The main function of the IPC module is to provide inter-
core interrupts. Optionally, flags can be sent along with an interrupt for implementation
or more advanced inter-core communication protocols.
The purpose of this application report is to demonstrate the use of the IPC module using
a simple application example.
Project collateral and source code discussed in this application report can be
downloaded from the following URL: http://www.ti.com/lit/zip/SPRAB20.

Contents
1 Introduction .. 1
2 IPC Module Structure .. 2
3 Application Example .. 2
4 References .. 6

List of Figures
1 Setting Up BIOS_INSTALL_DIR Environment Variable 3
2 BIOS Configuration File for the IPC Project .. 4
3 Code Composer Studio Setup for C6474 EVM ... 5
4 Running the IPC Project in Code Composer Studio .. 5

1 Introduction

Inter-core communication is the exchange of information among central processing unit (CPU) cores in a
multi-core device, such as the C6474 device.
In most applications where the work is partitioned among cores, either in a parallel or in a sequential
manner, there is a need for one core to pass control information and/or data buffers to another core. One
example would be a WiMax basestation, where one core might be working on transmitter functions, the
other core on the basic receiver functions, and the third core on advanced receiver processing such as
multiple-input and multiple-output (MIMO). The two receiver cores need to exchange data buffers and
possibly control information, whereas, the transmitter and receiver cores are mostly exchanging control
information.
The only scenario that does not require such communication is multi-channel processing where each core
is assigned a certain number of channels, statically or by an external host processor.
The mechanism of exchanging data buffers typically involves one core writing data to a particular memory
area – either via CPU, cache write-backs or direct memory access (DMA), in shared memory such as
external double data rate (DDR) or in one of on-chip static random access memory (SRAM) areas, and
notifying the other core that the data is available. A sample implementation is given in [2].

C6000 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB20
http://www.ti.com/lit/zip/SPRAB20

2 Inter-Core Communication on TMS320C6474 SPRAB20 – January 2009
Submit Documentation Feedback

IPC Module Structure www.ti.com

For exchanging control information, a notification with a small number of flags is typically sufficient. In both
cases, the notification typically occurs via an interrupt sent from one core to another.
In this application report, focus is on the interrupt mechanism among cores using the IPC peripheral that is
available on the C6474 device. A brief review of relevant peripheral registers and a description of a simple
application that uses the IPC module is also provided.

2 IPC Module Structure

The IPC is a global module, i.e., it is physically located outside the individual CPUs and surrounding
mega-modules. It is connected via the CFG bus (see the Configuration Switched Central Resource Block
Diagram in [1]).
There are two sets of registers in the IPC module: IPCGRn and IPCARn, n=0,1,2.
IPC Generator Registers (IPCGR) are written to by the source core to generate an interrupt, optionally
with flags, to the destination core. There are three registers, one per destination core: IPCGR0/1/2 to
generate an interrupt for core 0/1/2, respectively.
Writing to the LSB of IPCGRn generates an interrupt to core n. The event number corresponding to the
IPC interrupt is given in the Interrupts table in [1]. This information is needed to setup interrupt processing
on the destination core, which will be shown in the next section. Note that all cores generate the same
interrupt; some of the SRCS flags can be used to determine which core has sent an interrupt.
Alternatively, each task on each core can have a flag associated with it so that the receiving core knows
which specific task or process generated the interrupt.
There are 28 SRCS bits available for flags; the usage of these bits is completely under software control.
For example, a protocol can be defined where each of the remaining two cores might be assigned 14 bits,
where each bit or bitfield corresponds to some software-defined flag.
IPC Acknowledge Registers (IPCAR) are used by the destination core to clear SRCS bits. There are three
of those registers: IPCAR0/1/2 which are used by cores 0/1/2, respectively.
The source core sets flags by writing 1 to the SRCS bits in the IPCGR and the destination core clears
them by writing 1 to the SRCC bits in the IPCAR. The source core cannot clear the SRCS bits.
Detailed register descriptions are provided in the Inter-DSP Interrupt Registers section in [1].

3 Application Example

The usage of the IPC module is demonstrated using a simple application. The Code Composer Studio
project file, ipc.pjt and associated source files are included with this application report.

3.1 Build Environment
Before using the project, a Code Composer Studio variable CSLforIPC needs to be defined. This variable
is used to create the search path for the chip support library (CSL) include files and needs to point to the
correct version of the CSL. Note that only a CSL include file is needed and not the actual library file.
The Code Composer Studio variable CSLforIPC should be defined in
c:/CCStudio_v3.3/cc/bin/macro.ini. If the file does not exist yet, create it as follows:
CSLforIPC = C:\CSL\csl_c6488_03_00_06_05\csl_c6474

DSP/BIOS version 5.32.04 or higher is needed to support the evm6474 platform file.
DSP/BIOS versions can be downloaded from
https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html.
Multiple versions can be installed; however, the active version is selected inside Code Composer Studio
via Help → About → Component Manager → Target Content → TMS320C6400.
An environment variable BIOS_INSTALL_DIR is used to point to the active version of BIOS. The
environment variable can be edited via Start → Control Panel → System → Advanced → Environment
variables.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB20
http://www.ti.com/
https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

SPRAB20 – January 2009
Submit Documentation Feedback

Inter-Core Communication on TMS320C6474 3

Application Example www.ti.com

Figure 1. Setting Up BIOS_INSTALL_DIR Environment Variable

The project was tested with C6000™ DSP Code Generation Tool version 6.0.18 and BIOS version
5.33.02.

3.2 How the Application Works
The same application runs on all three cores. Each core is sending messages via IPC registers to the
other two cores. The message is sent periodically based on the on-chip timer events. When the core that
generates the message (the source core) writes to the IPCGR register that corresponds to the receiving
core (the destination core), the destination core receives an interrupt. This corresponding interrupt service
routine (ISR), that runs on the destination core, determines which core was the source of the message
and posts a corresponding software semaphore; there are three software semaphores in total, one per
core. The posting of the software semaphore causes a context switch to a task which is pending on the
semaphore. There are three tasks and each processes messages from a particular core. Note that on any
given core only two tasks are active since, in this example, a core does not send a message to itself.
the usage of SRCS bits for all three IPCGR registers is defined as follows:
• SRCS0-7 and SRCS24 are used by core 0
• SRCS8-15 and SRC25 are used by core 1
• SRCS16-23 and SRC26 are used by core 2
The high-order bits (SRCS24-26) are used by the destination core to determine from which core the
interrupt originated. The low-order bits (SRCS0-23) are used for flags. In this simple application, all 8 bits
are used together as an 8-bit counter such that it is easy to verify that the receiving core has received all
the interrupts.
The application is using DSP/BIOS and does not require any other libraries. The BIOS configuration for
the project is shown in Figure 1. The following BIOS objects are configured:
• HWI_INT4 is the object that corresponds to the inter-core interrupt, with the interrupt selection number

76 (see [1] for the mapping of events to interrupt selection numbers).
• PRDipcsend is a periodic function that is responsible for sending messages. It is triggered once every

5000 ticks or 5sec. Note that tick corresponds to 1msec and is generated by Timer 5.
• TSK0, TSK1, and TSK2 are processing messages from cores 0,1, and 2, respectively. The

corresponding software functions run forever and pend on SEM0, SEM1, and SEM2, respectively.
• SEM0, SEM1, and SEM2 objects are software semaphores used to signal receipt of a message from

core 0, 1, and 2, respectively. The semaphores are posted in the interrupt service routine for the IPC
event. Tasks TSK0, TSK1, and TSK2 pend on the semaphores and are running whenever a new
message from the corresponding core is received.

• trace object in the LOG manager is used to display LOG_printf() messages in DSP/BIOS message log
window.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB20
http://www.ti.com/

4 Inter-Core Communication on TMS320C6474 SPRAB20 – January 2009
Submit Documentation Feedback

Application Example www.ti.com

Figure 2. BIOS Configuration File for the IPC Project

3.3 How to Run the Application on the Evaluation Module (EVM)
The steps to run the application on the EVM are shown below.
1. Configure Code Composer Studio setup for the C6474 operation. It should look like Figure 2.
2. Start Code Composer Studio.
3. Open C64PLUS_F1A, _F1B and _F1C from the Parallel Debug Manager (PDM). These sessions

correspond to cores 0, 1, and 2 on Device 1.
4. Do the following in each session,

a. Project → Open … and navigate to ipc_c6474.pjt.
b. Debug → Connect.
c. Project → Build (F7).
d. File → Load … navigate to IPC.out.

Note: For this step to be performed automatically after the previous step, set Option →
Customize → Program/Project/IO → Load Program after Build.

e. Open DSP/BIOS → Message Log.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB20
http://www.ti.com/

SPRAB20 – January 2009
Submit Documentation Feedback

Inter-Core Communication on TMS320C6474 5

Application Example www.ti.com

5. Choose Debug → Run from the PDM. All three cores will start running at the same time. After 5-10
seconds, the Message Log should start displaying messages similar to Figure 3.

Figure 3. Code Composer Studio Setup for C6474 EVM

Figure 4. Running the IPC Project in Code Composer Studio

Note that the application will also run in the simulator, but the period of PRDicssend() should be reduced
from 5 seconds to 5 msec. Also, the RTDX mode setting under Input/Output in the BIOS configuration file
should be changed from JTAG to Simulator.
The application is built for Little Endian. To change endianess, make the following two changes and
rebuild:
1. Change System → Global Settings → General → DSP Endian Mode in the DSP/BIOS configuration

file.
2. Change Compiler → Advanced → Endianness in Project → Build Options.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB20
http://www.ti.com/

6 Inter-Core Communication on TMS320C6474 SPRAB20 – January 2009
Submit Documentation Feedback

References www.ti.com

4 References
1. TMS320C6474 Multicore Digital Signal Processor Data Manual (SPRS552)
2. Shared Memory Message Queue Transport (SHM_MQT),

https://www-a.ti.com/downloads/sds_support/targetcontent/MQT/index.html

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB20
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRS552
https://www-a.ti.com/downloads/sds_support/targetcontent/MQT/index.html

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Introduction
	2 IPC Module Structure
	3 Application Example
	3.1 Build Environment
	Figure 1. Setting Up BIOS_INSTALL_DIR Environment Variable

	3.2 How the Application Works
	Figure 2. BIOS Configuration File for the IPC Project
	Figure 3. Code Composer Studio Setup for C6474 EVM

	4 References
	IMPORTANT NOTICE

