参考資料 CC3120 # CC3120 SimpleLink™ Wi-Fi® ネットワーク・プロセッサ、 MCU アプリケーション向け loT (モノのインターネット) ソリューション ### 1 特長 - ワイヤレス・ネットワーク・プロセッサ (NWP) とパワー・ マネージメント・サブシステムで構成された CC3120R SimpleLink™ Wi-Fi® - 専用の Wi-Fi Internet-on-a chip™ Wi-Fi NWP によ り、Wi-Fi およびインターネット・プロトコル処理をアプリ ケーション・マイクロコントローラ・ユニット (MCU) から 完全にオフロード - Wi-Fi モード: - 802.11b/g/n ステーション - 802.11b/g/n アクセス・ポイント (AP) で最大 4 つの ステーションをサポート - Wi-Fi Direct® クライアント / グループ・オーナー - WPA2 パーソナルおよびエンタープライズ・セキュリテ ィ:WEP、WPA™/WPA2™ PSK、WPA2 エンタープラ イズ (802.1x)、WPA3[™] パーソナル、WPA3[™] エンタ ープライズ - IPv4 および IPv6 TCP/IP スタック - 業界標準の BSD ソケット・アプリケーション・プログ ラミング・インターフェイス (API): - 16 の TCP または UDP ソケットを同時に使用 - 6 つの TLS および SSL ソケットを同時に使用 - IP アドレッシング:静的 IP、LLA、DHCPv4、DHCPv6 と重複アドレス検出 (DAD) - SimpleLink 接続マネージャによる自律的で高速な Wi-Fi 接続 - SmartConfig[™] テクノロジ、AP モード、WPS2 オプシ ョンによる柔軟な Wi-Fi プロビジョニング - 内部 HTTP サーバーを使用する RESTful API サポ - 広範なセキュリティ機能: - ハードウェア機能 - 分離した実行環境 - デバイス ID - ネットワーク・セキュリティ: - パーソナルおよびエンタープライズ Wi-Fi セキ - セキュア・ソケット (SSLv3、TLS1.0/1.1/ TLS1.2) - HTTPS サーバー - 信頼済みルート証明書のカタログ - TI 信頼ルート公開キー - ソフトウェア IP 保護: - セキュアなキー・ストレージ - ファイル・システムのセキュリティ - ソフトウェアの改変検出 - 複製保護 - 専用 NWP 上で組み込みネットワーク・アプリケーショ ンを実行: - HTTP/HTTPS Web サーバーと動的なユーザー・ コールバック - mDNS、DNS-SD、DHCP サーバー - Ping - 回復機構:出荷時デフォルトまたは完全な出荷時イメ ージに回復可能 - Wi-Fi TX 出力: - 1DSSS で 18.0dBm - 540FDM で 14.5dBm - Wi-Fi RX 感度: - 1DSSS で -96.0dBm - 540FDM で -74.5dBm - アプリケーションのスループット: - UDP:16Mbps - TCP:13Mbps - パワー・マネージメント・サブシステム - 電源電圧範囲の広い内蔵 DC/DC コンバータ: - VBAT 広電圧範囲モード:2.1V~3.6V - VIO は常に VBAT と連動 - 事前安定化 1.85V モード - 高度な低消費電力モード - シャットダウン:1µA - ハイバネーション:4.5µA - 低消費電力ディープ・スリープ (LPDS): 115μA - RX トラフィック:59mA - TXトラフィック:229mA - アイドル接続時 (MCU が LPDS、DTIM = 1の 場合):690µA - クロック・ソース - 40.0MHz 水晶振動子と内部発振器 - 32.768kHz 水晶振動子または外部 RTC - RGK パッケージ - 64ピン、9mm×9mm VQFN (Very Thin Quad Flat Nonleaded) パッケージ、0.5mm ピッチ - 動作温度 - 周囲温度範囲:-40℃~+85℃ - SimpleLink MCU プラットフォームの開発者エコシステ ムをサポート # 2 アプリケーション - 次のような loT (モノのインターネット) アプリケーション: - クラウド接続 - インターネット・ゲートウェイ - ホーム/ビル・オートメーション - 家電製品 - アクセス制御 - セキュリティ・システム - スマート・エネルギー - 産業用制御 - スマート・プラグおよび計量 - ワイヤレス・オーディオ - IP ネットワークのセンサ・ノード - アセット・トラッキング - 医療機器 ### 3 概要 CC3120R デバイスは、Wi-Fi®、Bluetooth® Low Energy、Sub-1GHz、ホスト MCU で構成される SimpleLink™ マイクロコントローラ (MCU) プラットフォームの製品です。これらはすべて、シングルコアのソフトウェア開発キット (SDK) と豊富なツール・セットを持つ、共通の使いやすい開発環境を共有しています。SimpleLink™ プラットフォームの統合を 1 回行うだけで、どのようなデバイスの組み合わせでも個々の設計に追加でき、設計要件に変更があっても、コードを 100% 再利用することができます。詳細については、www.ti.com/simplelink をご覧ください。 テキサス・インスツルメンツ™の CC3120R デバイスですべての MCU を IoT に接続します。Wi-Fi Alliance[®] 認定の CC3120R は、第 2 世代 SimpleLink™ Wi-Fi[®] ファミリの製品であり、低消費電力インターネット接続機能を驚くほど簡単に実装できます。 CC3120R は、Wi-Fi およびインターネット・プロトコルをすべて ROM に実装しており、専用の内蔵 Arm® ネットワーク・プロセッサで実行できるため、ホスト MCU の負担が大幅に軽減され、システム統合が容易になります。 CC3120R Wi-Fi® Internet-on-a chip™ に専用の Arm® MCU が搭載されており、ネットワーク・アクティビティの多くをホスト MCU からオフロードできます。このサブシステムには、802.11b/g/n 無線、ベースバンド、MAC が含まれ、強力な暗号化エンジンが搭載されているため、256 ビットの暗号化を使用して、高速で安全なインターネット接続が可能です。 CC3120R はステーション、AP、Wi-Fi Direct モードをサポートしています。また、このデバイスは WPA2™ パーソナルおよびエンタープライズ・セキュリティと、WPA3™ パーソナルおよびエンタープライズにも対応しています。 TCP/IP、TLS/SSL スタック、HTTP サーバー、および複数のインターネット・プロトコルも内蔵しています。 CC3120R は、AP モードに基づく HTTP、SmartConfig™ テクノロジ、WPS2.0 など、各種の Wi-Fi プロビジョニング手法に対応しています。 TI の第 2 世代 SimpleLink™ Wi-Fi® ファミリの製品である CC3120R は、次のような新しい機能や強化された能力を備えています。 - IPv6 - 拡張 Wi-Fi プロビジョニング - 最適化された低消費電力管理 - 最大 4 つのステーションとの Wi-Fi AP 接続 - BSD ソケットの同時オープン数が増大、最大 16 の BSD ソケット (うち 6 つはセキュア) - HTTPS のサポート - RESTful API のサポート - 非対称キー暗号化ライブラリ CC3120R には、小さくて使いやすいホスト・ドライバが付いており、ネットワーク・アプリケーションの統合や開発を簡単に行えます。このホスト・ドライバは、ほとんどのプラットフォームとオペレーティング・システム (OS) に簡単に移植できますが、ANSI-C (C99) に厳密に準拠して記述されており、最小限のプラットフォーム・アダプテーション層 (移植層) が必要です。メモリのフットプリントが小さく、あらゆるクロック速度の 8/16/32 ビット MCU で動作できます (性能にもリアルタイム性能にも影響されません)。 CC3120R デバイスは、レイアウトが容易な VQFN パッケージで供給され、さまざまなツールとソフトウェア、サンプル・アプリケーション、ユーザーおよびプログラミング・ガイド、リファレンス・デザイン、TI E2E™ サポート・コミュニティを含む、完全なプラットフォーム・ソリューションです。 CC3120R は SimpleLink MCU エコシステムの製品です。 ### 製品情報 | 部品番号 ⁽¹⁾ | パッケージ | 本体サイズ (公称) | |---------------------|-----------|-----------------| | CC3120RNMARGKT/R | VQFN (64) | 9.00mm × 9.00mm | (1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。 # 4機能ブロック図 図 4-1 に、CC3120R SimpleLink Wi-Fi ソリューションの機能ブロック図を示します。 図 4-1. 機能ブロック図 図 4-2 に、CC3120R のハードウェア概要を示します。 図 4-2. CC3120R のハードウェア概要 図 4-3 に、CC3120R の組み込みソフトウェアの概要を示します。 図 4-3. CC3120R の組み込みソフトウェア概要 ## **Table of Contents** | 1 特長 | 1 | 8.13 Reset Requirement | 21 | |--|----|---|-----------------| | 2 アプリケーション | | 8.14 Timing and Switching Characteristics | 22 | | 3 概要 | | 8.15 External Interfaces | 30 | | 4 機能ブロック図 | | 9 Detailed Description | 34 | | 5 Revision History | | 9.1 Device Features | 34 | | 6 Device Comparison | | 9.2 Power-Management Subsystem | 37 | | 6.1 Related Products | | 9.3 Low-Power Operating Modes | 38 | | 7 Terminal Configuration and Functions | | 9.4 Memory | 39 | | 7.1 Pin Diagram | | 9.5 Restoring Factory Default Configuration | 40 | | 7.2 Pin Attributes | | 10 Applications, Implementation, and Layout | 41 | | 7.3 Connections for Unused Pins | | 10.1 Application Information | 41 | | 8 Specifications | | 10.2 PCB Layout Guidelines | 45 | | 8.1 Absolute Maximum Ratings | | 11 Device and Documentation Support | 48 | | 8.2 ESD Ratings | | 11.1 Development Tools and Software | 48 | | 8.3 Power-On Hours (POH) | | 11.2 Firmware Updates | 49 | | 8.4 Recommended Operating Conditions | | 11.3 Device Nomenclature | | | 8.5 Current Consumption Summary | | 11.4 Documentation Support | 50 | | 8.6 TX Power and IBAT versus TX Power Level | | 11.5 サポート・リソース | 52 | | Settings | 16 | 11.6 Trademarks | 52 | | 8.7 Brownout and Blackout Conditions | | 11.7 Electrostatic Discharge Caution | <mark>52</mark> | | 8.8 Electrical Characteristics (3.3 V, 25°C) | | 11.8 Export Control Notice | 52 | | 8.9 WLAN Receiver Characteristics | | 11.9 Glossary | 52 | | 8.10 WLAN Transmitter Characteristics | | 12 Mechanical, Packaging, and Orderable | | | 8.11 WLAN Filter Requirements | | Information | 53 | | 8.12 Thermal Resistance Characteristics | | 12.1 Packaging Information | <mark>53</mark> | | | | | | # **5 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | | hanges from February 7, 2018 to May 13, 2021 (from Revision * (Feb 2017) to Revision A
May 2021)) | Page | |---|--|------| | • | yy 現行の TI 標準を反映してフォーマットと構成を更新 | | | • | WPA3 パーソナルと WPA3 エンタープライズをセクション 1 に追加 | | | • | 「 <i>特長</i> 」セクションを変更 | | | • | WPA3 パーソナルと WPA3 エンタープライズをセクション 3 に追加 | | | • | 「 <i>概要</i> 」セクションを変更 | | | • | 「機能ブロック図」セクションに機能ブロック図を追加 | | | • | CC3120R のハードウェア概要のブロック図を追加 | | | • | Added Device Comparison section | | | • | Changed Device Features Comparison table | | | • | Changed CC3120 SDK Plug-In link | 9 | | • | Added NC = No internal connection note to the pinout diagram | 10 | | • | Changed Pin Attributes table | 11 | | • | Deleted the pin number for GND_TAB | 11 | | • | Changed Connections for Unused Pins table | 13 | | • | Changed the typical value for Hibernate from "4 µA" to "4.5 µA" | 15 | | • | Deleted the + sign from the typical values in the WLAN Transmitter Characteristics table | | | • | Added the table note "Power of 802.11b rates are reduced to meet ETSI requirements" to the WLAN | | | | Transmitter Characteristics table | 20 | | • | Added Reset Requirement table | 21 | | • | Changed from "200-mS" to 200-ms" in the <i>Device Reset</i> section | | | • | Changed from "pin 32" to "pin 52" in the second list item of the Device Reset section | | | • | Changed the Host SPI Interface Timing diagram | | ### www.tij.co.jp | • | Changed the parameter numbers in the Host SPI Interface Timing Parameters table | 28 | |---|---|----| | • | Changed Flash SPI Interface Timing diagram | | | • | Changed the parameter numbers in the Flash SPI Interface Timing Parameters table | | | • | Added WPA3 Personal and WPA3 Enterprise to セクション 9 | 34 | | • | Added WPA3 Personal and WPA3 Enterprise to セクション 9.1.1 | | | • | Added WPA3 personal and enterprise to 表 9-1 | 34 | | • | Added "The typical battery drain in this mode is 4.5 µA" to the <i>Hibernate</i> section | | | • | Added "The typical battery drain in this mode is 1 µA" to the <i>Shutdown</i> section | | | • | Changed the table title from "Title" to "Recommended Flash Size" | | | • | Changed the CC3120R Wide-Voltage Mode Application Circuit diagram | 41 | | • | Added R14 information to the Bill of Materials for CC3120R in Wide-Voltage Mode table | 41 | | • | Changed the CC3120R Preregulated 1.85-V Mode Application Circuit diagram | 43 | | • | Added R13 information to the Bill of Materials for CC3120R in Preregulated, 1.85-V Mode table | 43 | | • | Changed from "XTALM" to "XTAL_N" in the Clock Interfaces section | 46 | | • | Changed Tools and Software section | 48 | | • | Changed CC3120R Device Nomenclaturefigure | 49 | | • | Changed Documentation Support section | | | | | | # **6 Device Comparison** 表 6-1 shows the features supported across different CC3220 devices. ### 表 6-1. Device Features Comparison | FEATURE | DEVICE | | | | | | | |--|---|---|---|--|--|--|--| | FEATURE | CC3220R | CC3220S | CC3220SF | | | | | | | | On-Chip Application Memory | | | | | | | RAM | 256KB | 256KB | 256KB | | | | | | Flash | - | - | 1MB | | | | | | | | Security Features | | | | | | | Enhanced Application Level
Security | _ | File system security Secure key storage Software tamper detection Cloning protection Initial secure programming | File system security Secure key storage Software tamper detection Cloning
protection Initial secure programming | | | | | | Hardware Acceleration | Hardware Crypto Engines | Hardware Crypto Engines | Hardware Crypto Engines | | | | | | Additional Networking Security | Unique Device Identity Trusted Root-Certificate Catalog TI Root-of-Trust Public key | Unique Device Identity Trusted Root-Certificate Catalog TI Root-of-Trust Public key | Unique Device Identity Trusted Root-Certificate Catalog TI Root-of-Trust Public key | | | | | | Secure Boot | No | Yes | Yes | | | | | | | Additional Features | | | | | | | | Standard | | 802.11 b/g/n | | | | | | | TCP/IP Stack | IPv4, IPv6 | | | | | | | | Package | 9 mm × 9 mm VQFN | | | | | | | | Sockets | | 16 | | | | | | Submit Document Feedback #### **6.1 Related Products** For information about other devices in this family of products or related products, see the following links: SimpleLink™ MCU Portfolio This portfolio offers a single development environment that delivers flexible hardware, software and tool options for customers developing wired and wireless applications. With 100 percent code reuse across host MCUs, Wi-Fi™, Bluetooth® low energy, Sub-1 GHz devices and more, choose the MCU or connectivity standard that fits your design. A onetime investment with the SimpleLink software development kit (SDK) allows you to reuse often, opening the door to create unlimited applications. SimpleLink™ Wi-Fi® Family This device platform offers several Internet-on-a chip™ solutions, which address the need of battery operated, security enabled products. Texas instruments offers a single chip wireless microcontroller and a wireless network processor which can be paired with any MCU, to allow developers to design new wi-fi products, or upgrade existing products with wi-fi capabilities. MSP432™ Host MCU These MCUs feature the Arm® Cortex®-M4 processor that offers ample processing capability with floating point unit and memory footprint for advanced processing algorithm, communication protocols and application needs, while incorporating a 14-bit 1-msps ADC14 that provides a flexible and low-power analog with best-in-class performance to enable developers to add differentiated sensing and measurement capabilities to their Wi-Fi applications. Reference Designs for CC3100 and CC3120 Devices TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs and design files to speed your time to market. Search and download designs at ti.com/ tidesigns. SimpleLink™ Wi-Fi® This SDK plug-in contains drivers, sample applications for Wi-Fi features and internet, CC3120 SDK Plug-in and documentation required to use the CC3120 solution. # 7 Terminal Configuration and Functions ## 7.1 Pin Diagram NC = No internal connection 図 7-1. VQFN 64-Pin Assignments Top View Submit Document Feedback #### 7.2 Pin Attributes 表 7-1 describes the CC3120R pins. #### Note If an external device drives a positive voltage to signal pads when the CC3120R device is not powered, DC current is drawn from the other device. If the drive strength of the external device is adequate, an unintentional wakeup and boot of the CC3120R device can occur. To prevent current draw, TI recommends one of the following: - All devices interfaced to the CC3120R device must be powered from the same power rail as the CC3120R device. - Use level shifters between the CC3120R device and any external devices fed from other independent rails. - The nRESET pin of the CC3120R device must be held low until the V_{BAT} supply to the device is driven and stable. #### 表 7-1. Pin Attributes | PIN | DEFAULT FUNCTION | STATE AT RESET
AND HIBERNATE | I/O TYPE ⁽¹⁾ | DESCRIPTION | |-----|------------------|---------------------------------|-------------------------|---| | 2 | nHIB | Hi-Z | ı | Hibernate signal input to the NWP subsystem (active low). This is connected to the MCU GPIO. If the GPIO from the MCU can float while the MCU enters low power, consider adding a pullup resistor on the board to avoid floating. | | 3 | Reserved | Hi-Z | _ | Reserved for future use | | 5 | HOST_SPI_CLK | Hi-Z | I | Host interface SPI clock | | 6 | HOST_SPI_MOSI | Hi-Z | I | Host interface SPI data input | | 7 | HOST_SPI_MISO | Hi-Z | 0 | Host interface SPI data output | | 8 | HOST_SPI_nCS | Hi-Z | I | Host interface SPI chip select (active low) | | 9 | VDD_DIG1 | Hi-Z | Power | Digital core supply (1.2 V) | | 10 | VIN_IO1 | Hi-Z | Power | I/O supply | | 11 | FLASH_SPI_CLK | Hi-Z | 0 | Serial Flash interface: SPI clock | | 12 | FLASH_SPI_MOSI | Hi-Z | 0 | Serial Flash interface: SPI data out | | 13 | FLASH_SPI_MISO | Hi-Z | I | Serial Flash interface: SPI data in (active high) | | 14 | FLASH_SPI_CS | Hi-Z | 0 | Serial Flash interface: SPI chip select (active low) | | 15 | HOST_INTR | Hi-Z | 0 | Interrupt output (active high) | | 19 | Reserved | Hi-Z | _ | Connect a 100-kΩ pulldown resistor to ground. | | 21 | SOP2/TCXO_EN | Hi-Z | 0 | Controls restore to default mode. Enable signal for external TCXO. Add a 10-k Ω pulldown resistor to ground. | | 22 | WLAN_XTAL_N | Hi-Z | Analog | Connect the WLAN 40-MHz crystal here. | | 23 | WLAN_XTAL_P | Hi-Z | Analog | Connect the WLAN 40-MHz crystal here. | | 24 | VDD_PLL | Hi-Z | Power | Internal PLL power supply (1.4-V nominal) | | 25 | LDO_IN2 | Hi-Z | Power | Input to internal LDO | | 29 | Decembed | Hi-Z | 0 | Decemied for future use | | 30 | Reserved | ∏I-∠ | 0 | Reserved for future use | | 31 | RF_BG | Hi-Z | RF | 2.4-GHz RF TX, RX | | 32 | nRESET | Hi-Z | I | RESET input for the device. Active low input. Use RC circuit (100 k 0.1 µF) for power on reset (POR). | | 33 | VDD_PA_IN | Hi-Z | Power | Power supply for the RF power amplifier (PA) | | | | | | | Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback # 表 7-1. Pin Attributes (continued) | PIN | DEFAULT FUNCTION | STATE AT RESET AND HIBERNATE | I/O TYPE ⁽¹⁾ | DESCRIPTION | |-----|------------------|------------------------------|-------------------------|---| | 34 | SOP1 | Hi-Z | _ | SOP[2:0] used for factory restore. Add 100-k Ω pulldown to ground. See . | | 35 | SOP0 | Hi-Z | _ | SOP[2:0] used for factory restore. Add 100-k Ω pulldown to ground. See . | | 36 | LDO_IN1 | Hi-Z | Power | Input to internal LDO | | 37 | VIN_DCDC_ANA | Hi-Z | Power | Power supply for the DC/DC converter for analog section | | 38 | DCDC_ANA_SW | Hi-Z | Power | Analog DC/DC converter switch output | | 39 | VIN_DCDC_PA | Hi-Z | Power | PA DC/DC converter input supply | | 40 | DCDC_PA_SW_P | Hi-Z | Power | PA DC/DC converter switch output +ve | | 41 | DCDC_PA_SW_N | Hi-Z | Power | PA DC/DC converter switch output -ve | | 42 | DCDC_PA_OUT | Hi-Z | Power | PA DC/DC converter output. Connect the output capacitor for DC/DC here. | | 43 | DCDC_DIG_SW | Hi-Z | Power | Digital DC/DC converter switch output | | 44 | VIN_DCDC_DIG | Hi-Z | Power | Power supply input for the digital DC/DC converter | | 45 | DCDC_ANA2_SW_P | Hi-Z | Power | Analog2 DC/DC converter switch output +ve | | 46 | DCDC_ANA2_SW_N | Hi-Z | Power | Analog2 DC/DC converter switch output –ve | | 47 | VDD_ANA2 | Hi-Z | Power | Analog2 power supply input | | 48 | VDD_ANA1 | Hi-Z | Power | Analog1 power supply input | | 49 | VDD_RAM | Hi-Z | Power | Power supply for the internal RAM | | 50 | UART1_nRTS | Hi-Z | 0 | UART host interface (active low) | | 51 | RTC_XTAL_P | Hi-Z | Analog | 32.768-kHz XTAL_P or external CMOS level clock input | | 52 | RTC_XTAL_N | Hi-Z | Analog | 32.768-kHz XTAL_N or 100-kΩ external pullup for external clock | | 54 | VIN_IO2 | Hi-Z | Power | I/O power supply. Same as battery voltage. | | 55 | UART1_TX | Hi-Z | 0 | UART host interface. Connect to test point on prototype for Flash programming. | | 56 | VDD_DIG2 | Hi-Z | Power | Digital power supply (1.2 V) | | 57 | UART1_RX | Hi-Z | ı | UART host interface; connect to test point on prototype for Flash programming. | | 60 | TEST_60 | Hi-Z | 0 | Test signal; connect to an external test point. | | 61 | UART1_nCTS | Hi-Z | I | UART host interface (active low) | | 62 | TEST_62 | Hi-Z | 0 | Test signal; connect to an external test point. | | _ | GND | _ | Power | Ground tab used as thermal and electrical ground | (1) I = Input O = Output RF = radio frequency I/O = bidirectional ### 7.3 Connections for Unused Pins All unused pins must be left as no connect (NC) pins. 表 7-2 provides a list of NC pins. 表 7-2. Connections for Unused Pins | SC 7 2. Connections for Graded 1 ins | | | | | | | |--------------------------------------|------------------|---------------------------------|----------|------------------------------------|--|--| | PIN | DEFAULT FUNCTION | STATE AT RESET
AND HIBERNATE | I/O TYPE | DESCRIPTION | | | | 1 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 4 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 16 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 17 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 18 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 20 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 26 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 27 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 28 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 53 | NC | WLAN analog | _ | Unused; leave unconnected. | | | | 58 | NC | WLAN analog | _ | TEST_58 Unused; leave unconnected. | | | | 59 | NC | WLAN analog | _ | TEST_59 Unused; leave unconnected. | | | | 63 | NC | WLAN analog | _ | TEST_60 Unused; leave
unconnected. | | | | 64 | NC | WLAN analog | _ | Unused; leave unconnected. | | | ### 8 Specifications All measurements are referenced at the device pins, unless otherwise indicated. All specifications are over process and voltage, unless otherwise indicated. ### 8.1 Absolute Maximum Ratings These specifications indicate levels where permanent damage to the device can occur. Functional operation is not ensured under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device. (1) (2) | | | MIN | MAX | UNIT | |---|----------------------|------|-----------------------|------| | V _{BAT} and V _{IO} | Pins: 37, 39, 44 | -0.5 | 3.8 | V | | V _{IO} – V _{BAT} (differential) | Pins: 10, 54 | | 0.0 | V | | Digital inputs | | -0.5 | V _{IO} + 0.5 | V | | RF pins | | -0.5 | 2.1 | V | | Analog pins, crystal | Pins: 22, 23, 51, 52 | -0.5 | 2.1 | V | | Operating temperature, T _A | · | -40 | 85 | °C | | Storage temperature, T _{stg} | | -55 | 125 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### 8.2 ESD Ratings | | | | VALUE | UNIT | |------------------|-------------------------|---|-------|------| | V _{ESD} | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | V | | | Liectiostatic discharge | ectrostatic discharge Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±500 |] V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ### 8.3 Power-On Hours (POH) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products. | OPERATING CONDITION | POWER-ON HOURS [POH]
(hours) | |--|---------------------------------| | T _A up to 85°C ⁽¹⁾ | 87,600 | (1) The TX duty cycle (power amplifier ON time) is assumed to be 10% of the device POH. Of the remaining 90% of the time, the device can be in any other state. Submit Document Feedback ⁽²⁾ All voltage values are with respect to V_{SS}, unless otherwise noted. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ## 8.4 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)(1) (2) | | | | MIN | TYP | MAX | UNIT | |--------------------------------|-------------------------------------|--|--------------------|-----|-----|-----------| | V_{BAT} , V_{IO} | Pins: 10, 37, 39, | Direct battery connection ⁽³⁾ | 2.1 ⁽⁶⁾ | 3.3 | 3.6 | V | | (shorted to V _{BAT}) | norted to V _{BAT}) 44, 54 | Preregulated 1.85 V ^{(4) (5)} | | | | v | | Ambient thermal slew | | | -20 | | 20 | °C/minute | - (1) Operating temperature is limited by crystal frequency variation. - When operating at an ambient temperature of over 75°C, the transmit duty cycle must remain below 50% to avoid the auto-protect feature of the power amplifier. If the auto-protect feature triggers, the device takes a maximum of 60 seconds to restart the transmission. - (3) To ensure WLAN performance, ripple on the 2.1- to 3.3-V supply must be less than ±300 mV. - (4) To ensure WLAN performance, ripple on the 1.85-V supply must be less than 2% (±40 mV). - (5) TI recommends keeping V_{BAT} above 1.85 V. For lower voltages, use a boost converter. - (6) The minimum voltage specified includes the ripple on the supply voltage and all other transient dips. The brownout condition is also 2.1 V, and care must be taken when operating at the minimum specified voltage. ### 8.5 Current Consumption Summary $T_{\Delta} = 25^{\circ}C, V_{B\Delta T} = 3.6 \text{ V}$ | PARAMETER | Ti | EST CONDITIONS ⁽¹⁾ (4) | MIN TYP MA | X UNIT | |---|---------------------------|-----------------------------------|------------|--------| | | 1 DSSS | TX power level = 0 | 272 | | | | 1 0333 | TX power level = 4 | 188 | | | TX | 6 OFDM | TX power level = 0 | 248 | - MA | | | | TX power level = 4 | 179 | — mA | | | 54 OFDM | TX power level = 0 | 223 | | | | 54 OFDM | TX power level = 4 | 160 | | | RX ⁽⁶⁾ | 1 DSSS | | 53 | mA | | | 54 OFDM | | 53 | | | Idle connected ⁽²⁾ | | | 690 | μA | | LPDS | | | 115 | μA | | Hibernate ⁽⁵⁾ | | | 4.5 | μA | | Shutdown | | | 1 | μA | | | V _{BAT} = 3.6 V | | 420 | | | Peak calibration current ⁽³⁾ (6) | V _{BAT} = 3.3 V | | 450 | mA | | reak calibration current | V _{BAT} = 2.1 V | | 670 | | | | V _{BAT} = 1.85 V | | 700 | | - (1) TX power level = 0 implies maximum power (see 🗵 8-1, 🗵 8-2, and 🗵 8-3). TX power level = 4 implies output power backed off approximately 4 dB. - (2) DTIM = 1 - (3) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms. In default mode, calibration is performed sparingly, and typically occurs when re-enabling the NWP and when the temperature has changed by more than 20°C. There are two additional calibration modes that may be used to reduced or completely eliminate the calibration event. For further details, see CC3120, CC3220 SimpleLink™ Wi-Fi® and IoT Network Processor Programmer's Guide. - (4) The CC3120R system is a constant power-source system. The active current numbers scale based on the V_{BAT} voltage supplied. - (5) For the 1.85-V mode, the hibernate current is higher by 50 μA across all operating modes because of leakage into the PA and analog power inputs. - (6) The RX current is measured with a 1-Mbps throughput rate. ### 8.6 TX Power and IBAT versus TX Power Level Settings ☑ 8-1, ☑ 8-2, and ☑ 8-3 show TX Power and IBAT versus TX power level settings for modulations of 1 DSSS, 6 OFDM, and 54 OFDM, respectively. In \boxtimes 8-1, the area enclosed in the circle represents a significant reduction in current during transition from TX power level 3 to level 4. In the case of lower range requirements (14-dBm output power), TI recommends using TX power level 4 to reduce the current. 図 8-1. TX Power and IBAT vs TX Power Level Settings (1 DSSS) 図 8-2. TX Power and IBAT vs TX Power Level Settings (6 OFDM) 図 8-3. TX Power and IBAT vs TX Power Level Settings (54 OFDM) ### 8.7 Brownout and Blackout Conditions The device enters a brownout condition when the input voltage drops below $V_{brownout}$ (see \boxtimes 8-4 and \boxtimes 8-5). This condition must be considered during design of the power supply routing, especially when operating from a battery. High-current operations, such as a TX packet or any external activity (not necessarily related directly to networking) can cause a drop in the supply voltage, potentially triggering a brownout condition. The resistance includes the internal resistance of the battery, the contact resistance of the battery holder (four contacts for $2 \times AA$ batteries), and the wiring and PCB routing resistance. #### Note When the device is in HIBERNATE state, brownout is not detected. Only blackout is in effect during HIBERNATE state. 図 8-4. Brownout and Blackout Levels (1 of 2) 図 8-5. Brownout and Blackout Levels (2 of 2) Submit Document Feedback In the brownout condition, all sections of the device (including the 32-kHz RTC) shut down except for the Hibernate module, which remains on. The current in this state can reach approximately 400 μ A. The blackout condition is equivalent to a hardware reset event in which all states within the device are lost. 表 8-1 lists the brownout and blackout voltage levels. 表 8-1. Brownout and Blackout Voltage Levels | CONDITION | VOLTAGE LEVEL | UNIT | |-----------------------|---------------|------| | V _{brownout} | 2.1 | V | | V _{blackout} | 1.67 | V | ## 8.8 Electrical Characteristics (3.3 V, 25°C) | GPIO Pins Except 29, 30, 50, 52, and 53 (25°C) ⁽¹⁾ | | | | | | | | | | |---|---------------------------------|---|--|------------------------|-----|-------------------------|------|--|--| | | PARAMET | ER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | | | | C _{IN} | Pin capacitance | | | | 4 | | pF | | | | V _{IH} | High-level input v | /oltage | | 0.65 × V _{DD} | | V _{DD} + 0.5 V | V | | | | V _{IL} | Low-level input v | oltage | | -0.5 | | 0.35 × V _{DD} | V | | | | I _{IH} | High-level input of | current | | | 5 | | nA | | | | I _{IL} | Low-level input c | urrent | | | 5 | | nA | | | | | | | IL = 2 mA; configured I/O drive
strength = 2 mA;
$2.4 \text{ V} \leq \text{V}_{DD} < 3.6 \text{ V}$ | | | V _{DD} × 0.8 | | | | | | _{OH} High-level output | | IL = 4 mA; configured I/O drive
strength = 4 mA;
$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.6 \text{ V}$ | | | V _{DD} × 0.7 | | | | | V _{OH} | | voltage | IL = 8 mA; configured I/O drive
strength = 8 mA;
$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.6 \text{ V}$ | | | V _{DD} × 0.7 | V | | | | | | | IL = 2 mA; configured I/O drive
strength = 2 mA;
$2.1 \text{ V} \leq \text{V}_{DD} < 2.4 \text{ V}$ | | | V _{DD} × 0.75 | | | | | | | | IL = 2 mA; configured I/O drive
strength = 2 mA;
V _{DD} = 1.85 V | | | V _{DD} × 0.7 | | | | | | | | IL = 2 mA; configured I/O drive
strength = 2 mA;
$2.4 \text{ V} \leq \text{V}_{DD} <
3.6 \text{ V}$ | V _{DD} × 0.2 | | | | | | | | | | IL = 4 mA; configured I/O drive
strength = 4 mA;
$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.6 \text{ V}$ | V _{DD} × 0.2 | | | | | | | V_{OL} | Low-level output | voltage | IL = 8 mA; configured I/O drive
strength = 8 mA;
$2.4 \text{ V} \leq \text{V}_{DD} < 3.6 \text{ V}$ | V _{DD} × 0.2 | | | V | | | | | | IL = 2 mA; configured I/O drive
strength = 2 mA;
$2.1 \text{ V} \leq \text{V}_{DD} < 2.4 \text{ V}$ | V _{DD} × 0.25 | | | | | | | | | | | IL = 2 mA; configured I/O drive
strength = 2 mA;
V _{DD} = 1.85 V | V _{DD} × 0.35 | | | | | | | | | 2-mA drive | | 2 | | | | | | | ОН | High-level source current | 4-mA drive | | 4 | | | mA | | | | | Journe Current | 6-mA drive | | 6 | | | | | | | | | 2-mA drive | | 2 | | | | | | | OL | Low-level | 4-mA drive | | 4 | | | mA | | | | UL | sink current | 6-mA drive | | 6 | | | | | | Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback | GPIO Pins Except 29, 30, 50, 52, and 53 (25°C) ⁽¹⁾ | | | | | | | | | |---|-----------------|-----|-----|-----|------|--|--|--| | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | | | | | V _{IL} nRESET ⁽²⁾ | | 0.6 | | | V | | | | ¹⁾ TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength setting is 6 mA. ### 8.9 WLAN Receiver Characteristics T_A = 25°C, V_{BAT} = 2.1 V to 3.6 V. Parameters are measured at the SoC pin on channel 6 (2437 MHz). | PARAMETER | TEST CONDITIONS (Mbps) | MIN | TYP ⁽¹⁾ | MAX | UNIT | | | | |--|--------------------------|-----|--------------------|-----|-------|--|--|--| | | 1 DSSS | | -96.0 | | | | | | | | 2 DSSS | | -94.0 | | | | | | | | 11 CCK | | -88.0 | | | | | | | | 6 OFDM | | -90.5 | | | | | | | Sensitivity | 9 OFDM | | -90.0 | | dBm | | | | | (8% PER for 11b rates, 10% PER for 11g/11n rates) (10% PER) ⁽³⁾ | 18 OFDM | | -86.5 | | UDIII | | | | | | 36 OFDM | | -80.5 | | | | | | | | 54 OFDM | | -74.5 | | | | | | | | MCS7 (GF) ⁽²⁾ | | -71.5 | | | | | | | | MCS7 (MM) ⁽²⁾ | | -70.5 | | | | | | | Maximum input level | 802.11b | | -4.0 | | dBm | | | | | (10% PER) | 802.11g | | -10.0 | | ubili | | | | ⁽¹⁾ In preregulated 1.85-V mode, RX sensitivity is 0.25- to 1-dB lower. #### 8.10 WLAN Transmitter Characteristics $T_A = 25^{\circ}C$, $V_{BAT} = 2.1 \text{ V}$ to 3.6 V. Parameters measured at SoC pin on channel 7 (2442 MHz).⁽¹⁾ (2) | PARAMETER | TEST CONDITIONS(3) | MIN | TYP | MAX | UNIT | |--|--------------------|-----|------|-----|------| | | 1 DSSS | | 18.0 | | | | | 2 DSSS | | 18.0 | | | | | 11 CCK | | 18.3 | | | | | 6 OFDM | | 17.3 | | | | Maximum RMS output power measured at 1 dB from IEEE spectral mask or EVM | 9 OFDM | | 17.3 | | dBm | | | 18 OFDM | | 17.0 | | | | | 36 OFDM | | 16.0 | | | | | 54 OFDM | | 14.5 | | | | | MCS7 (MM) | | 13.0 | | | | Transmit center frequency accuracy | | -25 | | 25 | ppm | The edge channels (2412 and 2472 MHz) have reduced TX power to meet FCC emission limits. Product Folder Links: CC3120 ⁽²⁾ The nRESET pin must be held below 0.6 V for the device to register a reset. ⁽²⁾ Sensitivity for mixed mode is 1-dB worse. ⁽³⁾ Sensitivity is 1-dB worse on channel 13 (2472 MHz). ⁽²⁾ Power of 802.11b rates are reduced to meet ETSI requirements. ⁽³⁾ In preregulated 1.85-V mode, maximum TX power is 0.25- to 0.75-dB lower for modulations higher than 18 OFDM. ### 8.11 WLAN Filter Requirements The device requires an external band-pass filter to meet the various emission standards, including FCC. 2993 8.11.1 presents the attenuation requirements for the band-pass filter. TI recommends using the same filter used in the reference design to ease the process of certification. # 8.11.1 WLAN Filter Requirements | PARAMETER | FREQUENCY (MHz) | MIN | TYP | MAX | UNIT | |-------------------------------|-----------------|-----|-----|-----|------| | Return loss | 2412 to 2484 | 10 | | | dB | | Insertion loss ⁽¹⁾ | 2412 to 2484 | | 1 | 1.5 | dB | | | 800 to 830 | 30 | 45 | | | | | 1600 to 1670 | 20 | 25 | | | | | 3200 to 3300 | 30 | 48 | | | | | 4000 to 4150 | 45 | 50 | | | | Attenuation | 4800 to 5000 | 20 | 25 | | dB | | | 5600 to 5800 | 20 | 25 | | | | | 6400 to 6600 | 20 | 35 | | | | | 7200 to 7500 | 35 | 45 | | | | | 7500 to 10000 | 20 | 25 | | | | Reference impendence | 2412 to 2484 | | 50 | | Ω | | Filter type | Bandpass | | | | | ⁽¹⁾ Insertion loss directly impacts output power and sensitivity. At customer discretion, insertion loss can be relaxed to meet attenuation requirements. #### 8.12 Thermal Resistance Characteristics ### 8.12.1 Thermal Resistance Characteristics for RGK Package | | AIR FLOW | | | | | | | | | | | |---------------|-------------|---------------|---------------|---------------|--|--|--|--|--|--|--| | PARAMETER | 0 Ifm (C/W) | 150 Ifm (C/W) | 250 Ifm (C/W) | 500 Ifm (C/W) | | | | | | | | | θ_{ja} | 23 | 14.6 | 12.4 | 10.8 | | | | | | | | | Ψ_{jt} | 0.2 | 0.2 | 0.3 | 0.1 | | | | | | | | | Ψ_{jb} | 2.3 | 2.3 | 2.2 | 2.4 | | | | | | | | | θ_{jc} | 6.3 | | | | | | | | | | | | θ_{jb} | 2.4 | | | | | | | | | | | ### 8.13 Reset Requirement | | PARAMETER | MIN | TYP | MAX | UNIT | |-----------------------------------|--|-----|-------------------------|-----|------| | V _{IH} | Operation mode level | | 0.65 × V _{BAT} | | V | | V _{IL} | Shutdown mode level ⁽¹⁾ | 0 | 0.6 | | V | | | Minimum time for nReset low for resetting the module | 5 | | | ms | | T _r and T _f | Rise and fall times | | 20 | | μs | ⁽¹⁾ The nRESET pin must be held below 0.6 V for the module to register a reset. ### 8.14 Timing and Switching Characteristics #### 8.14.1 Power Supply Sequencing For proper operation of the CC3120R device, perform the recommended power-up sequencing as follows: - 1. Tie V_{BAT} (pins 37, 39, 44) and V_{IO} (pins 54 and 10) together on the board. - 2. Hold the RESET pin low while the supplies are ramping up. TI recommends using a simple RC circuit (100 K \parallel , 1 μ F, RC = 100 ms). - 3. For an external RTC, ensure that the clock is stable before RESET is deasserted (high). For timing diagrams, see セクション 8.14.3. #### 8.14.2 Device Reset When a device restart is required, the user may either issue a negative pulse on the nHIB pin (pin 2) or on the nRESET pin (pin 32), keeping the other pulled high, depending on the configuration of the platform. In case the nRESET pin is used, the user must follow one of the two alternatives to ensure the reset is properly applied: - A high-to-low reset pulse (on pin 32) of at least 200-ms duration - If the above cannot be ensured, a pulldown resistor of 2 MΩ should be connected to pin 52 (RTC_XTAL_N). If implemented, a shorter pulse of at least 100 μs can be used. To ensure a proper reset sequence, the user has to call the sl stop function prior to toggling the reset. #### 8.14.3 Reset Timing ### 8.14.3.1 nRESET (32-kHz Crystal) ☑ 8-6 shows the reset timing diagram for the 32-kHz crystal first-time power-up and reset removal. 図 8-6. First-Time Power-Up and Reset Removal Timing Diagram (32-kHz Crystal) セクション 8.14.3.2 describes the timing requirements for the crystal first-time power-up and reset removal. ### 8.14.3.2 First-Time Power-Up and Reset Removal Timing Requirements (32-kHz Crystal) | ITEM | NAME | DESCRIPTION | MIN | TYP | MAX | UNIT | |------|-----------------------|--|-----|------|-----|------| | T1 | Supply settling time | Depends on application board power supply, decoupling capacitor, and so on | | 3 | | ms | | T2 | Hardware wake-up time | | | 25 | | ms | | Т3 | Initialization time | 32-kHz crystal settling plus firmware initialization time plus radio calibration | | 1.35 | | s | # 8.14.3.3 nRESET (External 32-kHz) Submit Document Feedback 図 8-7. First-Time Power-Up and Reset Removal Timing Diagram (External 32-kHz) セクション 8.14.3.3.1 describes the timing requirements for the external first-time power-up and reset removal. ### 8.14.3.3.1 First-Time Power-Up and Reset Removal Timing Requirements (External 32-kHz) | ITEM | NAME | DESCRIPTION | MIN | TYP | MAX | UNIT | |------|-----------------------|--|-----|-----|-----|------| | T1 | Supply settling time | Depends on application board power supply, decoupling capacitor, and so on | | 3 | | ms | | T2 | Hardware wake-up time | | | 25 | | ms | | Т3 | Initialization time | Firmware initialization time plus radio calibration | | 250 | | ms | #### 8.14.4 Wakeup From HIBERNATE Mode ☑ 8-8 shows the timing diagram for wakeup from HIBERNATE mode. 図 8-8. nHIB Timing Diagram #### Note The 32.768-kHz crystal is kept enabled by default when the chip goes into HIBERNATE mode in response to nHIB being pulled low. セクション 8.14.4.1 セクション 8.14.4.1 describes the timing requirements for nHIB. ### 8.14.4.1 nHIB Timing Requirements | ITEM | NAME | DESCRIPTION | MIN | TYP | MAX | UNIT | |----------------------------|--|--|-----|-----|-----|------| | T _{hib_min} | Minimum hibernate time | Minimum pulse width of nHIB being low ⁽²⁾ | 10 | | | ms | | T _{wake_from_hib} | Hardware wakeup time plus firmware initialization time | See ⁽¹⁾ | | 50 | | ms | - (1) If temperature changes by more than 20°C, initialization time from HIB can increase by 200 ms due to radio calibration. - (2) Ensure that the nHIB pulse width is kept above the minimum requirement under all conditions
(such as power up, MCU reset, and so on). #### 8.14.5 Clock Specifications The CC3120R device requires two separate clocks for its operation: - A slow clock running at 32.768 kHz is used for the RTC. - A fast clock running at 40 MHz is used by the device for the internal processor and the WLAN subsystem. The device features internal oscillators that enable the use of less-expensive crystals rather than dedicated TCXOs for these clocks. The RTC can also be fed externally to provide reuse of an existing clock on the system and to reduce overall cost. #### 8.14.5.1 Slow Clock Using Internal Oscillator The RTC crystal connected on the device supplies the free-running slow clock. The accuracy of the slow clock frequency must be 32.768 kHz ±150 ppm. In this mode of operation, the crystal is tied between RTC_XTAL_P (pin 51) and RTC_XTAL_N (pin 52) with a suitable load capacitance to meet the ppm requirement. 図 8-9 shows the crystal connections for the slow clock. Copyright © 2017, Texas Instruments Incorporated 図 8-9. RTC Crystal Connections セクション 8.14.5.1.1 lists the RTC crystal requirements. #### 8.14.5.1.1 RTC Crystal Requirements | CHARACTERISTICS | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------|-------------------------------------|-----|--------|------|------| | Frequency | | | 32.768 | | kHz | | Frequency accuracy | Initial plus temperature plus aging | | | ±150 | ppm | | Crystal ESR | 32.768 kHz | | | 70 | kΩ | ### 8.14.5.2 Slow Clock Using an External Clock When an RTC oscillator is present in the system, the CC3120R device can accept this clock directly as an input. The clock is fed on the RTC_XTAL_P line, and the RTC_XTAL_N line is held to V_{IO} . The clock must be a CMOS-level clock compatible with V_{IO} fed to the device. 図 8-10 shows the external RTC input connection. Copyright © 2017, Texas Instruments Incorporated 図 8-10. External RTC Input セクション 8.14.5.2.1 lists the external RTC digital clock requirements. ### 8.14.5.2.1 External RTC Digital Clock Requirements | CHARACTERISTICS | TEST CONDITIONS MIN TYP MAX | | UNIT | | | |--|-----------------------------|--|-------|--|-----| | Frequency | | | 32768 | | Hz | | Frequency accuracy (Initial plus temperature plus aging) | | | ±150 | | ppm | | | CHARACTERISTICS | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------------|--|-------------------------|------------------------|-----|------------------------|-------------------| | t _r , t _f | Input transition time t_r , t_f (10% to 90%) | | | | 100 | ns | | | Frequency input duty cycle | | 20% | 50% | 80% | | | V _{ih} | Slow clock input voltage limits | Square wave, DC coupled | 0.65 × V _{IO} | | V _{IO} | V | | V _{il} | Slow clock input voltage littles | Square wave, DC coupled | 0 | | 0.35 × V _{IO} | V _{peak} | | Input impedance | | | 1 | | | ΜΩ | | | input impedance | | | | 5 | pF | ## 8.14.5.3 Fast Clock (F_{ref}) Using an External Crystal The CC3120R device also incorporates an internal crystal oscillator to support a crystal-based fast clock. The crystal is fed directly between WLAN_XTAL_P (pin 23) and WLAN_XTAL_N (pin 22) with suitable loading capacitors. 図 8-11 shows the crystal connections for the fast clock. A. The crystal capacitance must be tuned to ensure that the PPM requirement is met. See CC31xx & CC32xx Frequency Tuning for information on frequency tuning. 図 8-11. Fast Clock Crystal Connections セクション 8.14.5.3.1 lists the WLAN fast-clock crystal requirements. #### 8.14.5.3.1 WLAN Fast-Clock Crystal Requirements | CHARACTERISTICS | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------|-------------------------------------|-----|-----|-----|------| | Frequency | | | 40 | | MHz | | Frequency accuracy | Initial plus temperature plus aging | | | ±25 | ppm | | Crystal ESR | 40 MHz | | | 60 | Ω | Submit Document Feedback ### 8.14.5.4 Fast Clock (F_{ref}) Using an External Oscillator The CC3120R device can accept an external TCXO/XO for the 40-MHz clock. In this mode of operation, the clock is connected to WLAN_XTAL_P (pin 23). WLAN_XTAL_N (pin 22) is connected to GND. The external TCXO/XO can be enabled by TCXO_EN (pin 21) from the device to optimize the power consumption of the system. If the TCXO does not have an enable input, an external LDO with an enable function can be used. Using the LDO improves noise on the TCXO power supply. 8-12 shows the connection. 図 8-12. External TCXO Input セクション 8.14.5.4.1 lists the external F_{ref} clock requirements. ### 8.14.5.4.1 External F_{ref} Clock Requirements (-40°C to +85°C) | | CHARACTERISTICS | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|--|-------------|---------------------------------------|-----|-------|--------|-----------------| | | Frequency | | | | 40.00 | | MHz | | | Frequency accuracy (Initial plus temperature plus aging) | | | | | ±25 | ppm | | | Frequency input duty | cycle | | 45% | 50% | 55% | | | V _{pp} | Clock voltage limits | | Sine or clipped sine wave, AC coupled | 0.7 | | 1.2 | V _{pp} | | | | | at 1 kHz | | | -125 | | | | Phase noise at 40 MH | z | at 10 kHz | | | -138.5 | dBc/Hz | | | | | at 100 kHz | | | -143 | | | | Innut impedance | Resistance | | 12 | | | kΩ | | | Input impedance | Capacitance | | | | 7 | pF | ### 8.14.6 Interfaces This section describes the interfaces that are supported by the CC3120R device: - Host SPI - Flash SPI ### 8.14.6.1 Host SPI Interface Timing ☑ 8-13 shows the Host SPI interface timing diagram. 図 8-13. Host SPI Interface Timing セクション 8.14.6.1.1 lists the Host SPI interface timing parameters. ### 8.14.6.1.1 Host SPI Interface Timing Parameters | PARAMETER
NUMBER | | | MIN | MAX | UNIT | |---------------------|--|---|-----|-----|-------| | T1 | F(1) | Clock frequency at V _{BAT} = 3.3 V | | 20 | MHz | | | | Clock frequency at V _{BAT} ≤ 2.1 V | | 12 | IVIHZ | | T2 | t _{clk} ⁽¹⁾ ⁽²⁾ | Clock period | 50 | | ns | | Т3 | t _{LP} ⁽¹⁾ | Clock low period | | 25 | ns | | T4 | t _{HT} ⁽¹⁾ | Clock high period | | 25 | ns | | T5 | D ⁽¹⁾ | Duty cycle | 45% | 55% | | | T6 | t _{IS} (1) | RX data setup time | 4 | | ns | | Т7 | t _{IH} ⁽¹⁾ | RX data hold time | 4 | | ns | | Т8 | t _{OD} ⁽¹⁾ | TX data output delay | | 20 | ns | | Т9 | t _{OH} ⁽¹⁾ | TX data hold time | | 24 | ns | ⁽¹⁾ The timing parameter has a maximum load of 20 pF at 3.3 V. Submit Document Feedback ⁽²⁾ Ensure that nCS (active-low signal) is asserted 10 ns before the clock is toggled. The nCS can be deasserted 10 ns after the clock edge. ## 8.14.6.2 Flash SPI Interface Timing 図 8-14 shows the Flash SPI interface timing diagram. 図 8-14. Flash SPI Interface Timing セクション 8.14.6.2.1 lists the Flash SPI interface timing parameters. ## 8.14.6.2.1 Flash SPI Interface Timing Parameters | PARAMETER
NUMBER | | | MIN | MAX | UNIT | |---------------------|------------------|----------------------|-----|-----|------| | T1 | F | Clock frequency | | 20 | MHz | | T2 | t _{clk} | Clock period | 50 | | ns | | Т3 | t _{LP} | Clock low period | | 25 | ns | | T4 | t _{HT} | Clock high period | | 25 | ns | | T5 | D | Duty cycle | 45% | 55% | | | T6 | t _{IS} | RX data setup time | 1 | | ns | | T7 | t _{IH} | RX data hold time | 2 | | ns | | Т8 | t _{OD} | TX data output delay | | 8.5 | ns | | Т9 | t _{OH} | TX data hold time | | 8 | ns | ### 8.15 External Interfaces ### 8.15.1 SPI Flash Interface The external serial Flash stores the user profiles and firmware patch updates. The CC3120R device acts as a master in this case; the SPI serial Flash acts as the slave device. This interface can work up to a speed of 20 MHz. 8-15 shows the SPI Flash interface. 図 8-15. SPI Flash Interface セクション 8.15.1.1 lists the SPI Flash interface pins. #### 8.15.1.1 SPI Flash Interface | PIN NAME | DESCRIPTION | |----------------|---| | FLASH_SPI_CLK | Clock (up to 20 MHz) CC3120R device to serial Flash | | FLASH_SPI_CS | CS signal from CC3120R device to serial Flash | | FLASH_SPI_MISO | Data from serial Flash to CC3120R device | | FLASH_SPI_MOSI | Data from CC3120R device to serial Flash | Submit Document Feedback ### 8.15.2 SPI Host Interface The device interfaces to an external host using the SPI interface. The CC3120R device can interrupt the host using the HOST_INTR line to initiate the data transfer over the interface. The SPI host interface can work up to a speed of 20 MHz. 8-16 shows the SPI host interface. Copyright @ 2017, Texas institutions incorporati 図 8-16. SPI Host Interface セクション 8.15.2.1 lists the SPI host interface pins. ### 8.15.2.1 SPI Host Interface | PIN NAME | DESCRIPTION | |---------------|---| | HOST_SPI_CLK | Clock (up to 20 MHz) from MCU host to CC3120R device | | HOST_SPI_nCS | CS (active low) signal from MCU host to CC3120R device | | HOST_SPI_MOSI | Data from MCU host to CC3120R device | | HOST_INTR | Interrupt from CC3120R device to MCU host | | HOST_SPI_MISO | Data from CC3120R device to MCU host | | nHIB | Active-low signal that commands the CC3120R device to enter hibernate mode (lowest power state) | #### 8.15.3 Host UART Interface The SimpleLink device requires the UART configuration described in セクション 8.15.3.1. ### 8.15.3.1 SimpleLink™ UART Configuration | PROPERTY | SUPPORTED CC3120R CONFIGURATION | |-------------------------|--| | Baud rate | 115200 bps, no auto-baud rate detection, can be changed by the host up to 3 Mbps using a special command | | Data bits | 8 bits | | Flow control | CTS/RTS | | Parity | None | | Stop bits | 1 | | Bit order | LSBit first | | Host interrupt
polarity | Active high | | Host interrupt mode | Rising edge or level 1 | | Endianness | Little-endian only ⁽¹⁾ | (1) The SimpleLink device does not support automatic detection of the host length while using the UART interface. #### 8.15.3.2 5-Wire UART Topology ⊠ 8-17 shows the typical 5-wire UART topology comprised of four standard UART lines plus one IRQ line from the device to the host controller to allow efficient low-power mode. Copyright © 2017, Texas Instruments Incorporated 図 8-17. Typical 5-Wire UART Topology This topology is recommended because the configuration offers the maximum communication reliability and flexibility between the host and the SimpleLink device. #### 8.15.3.3 4-Wire UART Topology The 4-wire UART topology eliminates the host IRQ line (see 🗵 8-18). Using this topology requires meeting one of the following conditions: - The host is always awake or active. - The host goes to sleep, but the UART module has receiver start-edge detection for auto wakeup and does not lose data. 図 8-18. 4-Wire UART Configuration ### 8.15.3.4 3-Wire UART Topology The 3-wire UART topology requires only the following lines (see 図 8-19): - RX - TX - CTS 図 8-19. 3-Wire UART Topology Using this topology requires meeting one of the following conditions: - · The host always stays awake or active. - The host goes to sleep but the UART module has receiver start-edge detection for auto-wake-up and does not lose data. - The host can always receive any amount of data transmitted by the SimpleLink device because there is no flow control in this direction. Because there is no full flow control, the host cannot stop the SimpleLink device to send its data; thus, the following parameters must be carefully considered: - · Maximum baud rate - · RX character interrupt latency and low-level driver jitter buffer - · Time consumed by the user's application ### 9 Detailed Description The CC3120R Wi-Fi Internet-on-a-chip contains a dedicated Arm MCU that offloads many of the networking activities from the host MCU. The device includes an 802.11b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast, secure WLAN and Internet connections with 256-bit encryption. The CC3120R device supports station, AP, and Wi-Fi Direct modes. The device also supports WPA2 personal and enterprise security, WPS 2.0, and WPA3 personal and enterprise security. The Wi-Fi network processor includes an embedded IPv6 and IPv4 TCP/IP stack. #### 9.1 Device Features #### 9.1.1 WLAN The WLAN features are as follows: • 802.11b/g/n integrated radio, modem, and MAC supporting WLAN communication as a BSS station, AP, Wi-Fi Direct client and group owner with CCK and OFDM rates in the 2.4-GHz ISM band, channels 1 to 13. #### Note 802.11n is supported only in Wi-Fi station, Wi-Fi direct, and P2P client mode - Autocalibrated radio with a single-ended 50-Ω interface enables easy connection to the antenna without requiring expertise in radio circuit design. - Advanced connection manager with multiple user-configurable profiles stored in serial Flash allows automatic fast connection to an access point without user or host intervention. - Supports all common Wi-Fi security modes for personal and enterprise networks with on-chip security accelerators, including: WEP, WPA/WPA2 PSK, WPA2 Enterprise (802.1x), WPA3 Personal, and WPA3 Enterprise. - Smart provisioning options deeply integrated within the device providing a comprehensive end-to-end solution. With elaborate events notification to the host, enabling the application to control the provisioning decision flow. The wide variety of Wi-Fi provisioning methods include: - Access Point using HTTPS - SmartConfig Technology: a 1-step, 1-time process to connect a CC3120R-enabled device to the home wireless network, removing dependency on the I/O capabilities of the host MCU; thus, it is usable by deeply embedded applications - 802.11 transceiver mode allows transmitting and receiving of proprietary data through a socket without adding MAC or PHY headers. The 802.11 transceiver mode provides the option to select the working channel, rate, and transmitted power. The receiver mode works with the filtering options. #### 9.1.2 Network Stack The Network Stack features are as follows: Integrated IPv4, IPv6 TCP/IP stack with BSD (BSD adjacent) socket APIs for simple Internet connectivity with any MCU, microprocessor, or ASIC #### **Note** Not all APIs are 100% BSD compliant. Not all BSD APIs are supported. - Support of 16 simultaneous TCP, UDP, or RAW sockets - Support of 6 simultaneous SSL\TLS sockets - Built-in network protocols: - Static IP, LLA, DHCPv4, DHCPv6 with DAD and stateless autoconfiguration - ARP, ICMPv4, IGMP, ICMPv6, MLD, ND - DNS client for easy connection to the local network and the Internet - · Built-in network application and utilities: - HTTP/HTTPS - Web page content stored on serial Flash - RESTful APIs for setting and configuring application content Submit Document Feedback - · Dynamic user callbacks - Service discovery: Multicast DNS service discovery lets a client advertise its service without a centralized server. After connecting to the access point, the CC3120R device provides critical information, such as device name, IP, vendor, and port number. - DHCP server - Ping ## 表 9-1 summarizes the NWP features. #### 表 9-1. NWP Features | Feature | Description | |------------------------------------|---| | | 802.11b/g/n station | | Wi-Fi standards | 802.11b/g AP supporting up to four stations | | | Wi-Fi Direct client and group owner | | Wi-Fi | Channels 1 to 13 | | Wi-Fi security | WEP, WPA/WPA2 PSK, WPA2 enterprise (802.1x), WPA3 personal and enterprise | | Wi-Fi provisioning | SmartConfig technology, Wi-Fi protected setup (WPS2), AP mode with internal HTTP/HTTPS web server | | IP protocols | IPv4/IPv6 | | IP addressing | Static IP, LLA, DHCPv4, DHCPv6 (Stateful) with DAD and stateless auto configuration | | Cross layer | ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP | | | UDP, TCP | | Transport | SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2 | | | RAW IP | | | Ping | | | HTTP/HTTPS web server | | Network applications and utilities | mDNS | | | DNS-SD | | | DHCP server | | Host interface | UART/SPI | | | Device identity | | Security | Trusted root-certificate catalog | | | TI root-of-trust public key | | Power management | Enhanced power policy management uses 802.11 power save and deep sleep power modes | | | RF Transceiver | | Other | Programmable RX Filters with Events trigger mechanism including WoWLAN | | | Recovery mechanism – Restore to factory default | #### 9.1.3 Security The SimpleLink Wi-Fi CC3120R Internet-on-a-chip device enhances the security capabilities available for development of IoT devices, while completely offloading these activities from the MCU to the networking subsystem. The security capabilities include the following key features: #### Wi-Fi and Internet Security: - Personal and enterprise Wi-Fi security - Personal standards - AES (WPA2-PSK) - TKIP (WPA-PSK) - WEP - Enterprise standards - EAP Fast - EAP PEAPv0 MSCHAPv2 - EAP PEAPv0 TLS - EAP PEAPv1 TLS EAP LS - EAP TTLS TLS - EAP TTLS MSCHAPv2 - · Secure sockets - Protocol versions: SSL v3/TLS 1.0/TLS 1.1/TLS 1.2 - On-chip powerful crypto engine for fast, secure Wi-Fi and internet connections with 256-bit AES encryption for TLS and SSL connections - Ciphers suites - · SL SEC MASK SSL RSA WITH RC4 128 SHA - SL SEC MASK SSL RSA WITH RC4 128 MD5 - SL SEC MASK TLS RSA WITH AES 256 CBC SHA - SL_SEC_MASK_TLS_DHE_RSA_WITH AES 256 CBC SHA - SL SEC MASK TLS ECDHE RSA WITH AES 256 CBC SHA - SL SEC MASK TLS ECDHE RSA WITH RC4 128 SHA - SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256 - SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256 - SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - · SL SEC MASK TLS ECDHE ECDSA WITH AES 128 CBC SHA256 - SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA SL_SEC_MASK_TLS_ECDHE_ECDSA - SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256 - SL SEC MASK TLS RSA WITH AES 256 GCM SHA384 - SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 - · SL SEC MASK TLS DHE RSA WITH AES 256 GCM SHA384 - SL SEC MASK TLS ECDHE RSA WITH AES 128 GCM SHA256 - · SL SEC MASK TLS ECDHE RSA WITH AES 256 GCM SHA384 - SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - SL SEC MASK TLS ECDHE ECDSA WITH AES 256 GCM SHA384 - SL SEC MASK TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256 - SL SEC MASK TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 - SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 - Server authentication - Client authentication - Domain name verification - Socket upgrade to secure socket STARTTLS - Secure HTTP server (HTTPS) - The Trusted root-certificate catalog verifies that the CA used by the application is trusted and known secure content delivery - The TI root-of-trust public key is a hardware-based mechanism that allows authenticating TI as the genuine origin of a given content using asymmetric keys - · Secure content delivery allows file transfer to the system in a secure way on any unsecured tunnel #### **Code and Data Security:** - Secured network information: Network passwords and certificates are encrypted - Secured and authenticated service pack: SP is signed based on TI certificate #### 9.1.4 Host Interface and Driver - Interfaces over a 4-wire serial peripheral interface (SPI) with any MCU or a processor at a clock speed of 20 MHz. - Interfaces over UART with any MCU with a baud rate up to 3 Mbps. A low footprint driver is provided for TI MCUs and is easily ported to any processor or ASIC. - Simple APIs enable easy integration with any single-threaded or multithreaded application. ## 9.1.5 System - Works from a single preregulated power supply or connects directly to a battery - Ultra-low leakage when disabled (hibernate mode) with a current of less than 4 μA with the RTC running - · Integrated
clock sources ## 9.2 Power-Management Subsystem The CC3120R power-management subsystem contains DC/DC converters to accommodate the different voltage or current requirements of the system. - Digital DC/DC (Pin 44) - Input: V_{BAT} wide voltage (2.1 to 3.6 V) or preregulated 1.85 V - ANA1 DC/DC (Pin 38) - Input: V_{BAT} wide voltage (2.1 to 3.6 V) - In preregulated 1.85-V mode, the ANA1 DC/DC converter is bypassed. - PA DC/DC (Pin 39) - Input: V_{BAT} wide voltage (2.1 to 3.6 V) - In preregulated 1.85-V mode, the PA DC/DC converter is bypassed. The CC3120R device is a single-chip WLAN radio solution used on an embedded system with a wide-voltage supply range. The internal power management, including DC/DC converters and LDOs, generates all of the voltages required for the device to operate from a wide variety of input sources. For maximum flexibility, the device can operate in the modes described in セクション 9.2.1 and セクション 9.2.2. ## 9.2.1 V_{BAT} Wide-Voltage Connection In the wide-voltage battery connection, the device is powered directly by the battery or preregulated 3.3-V supply . All other voltages required to operate the device are generated internally by the DC/DC converters. This scheme supports wide-voltage operation from 2.1 to 3.6 V and is thus the most common mode for the device. ## 9.2.2 Preregulated 1.85V The preregulated 1.85-V mode of operation applies an external regulated 1.85 V directly at pins 10, 25, 33, 36, 37, 39, 44, 48, and 54 of the device. The V_{BAT} and the V_{IO} are also connected to the 1.85-V supply. This mode provides the lowest BOM count version in which inductors used for PA DC/DC and ANA1 DC/DC (2.2 and 1 μ H) and a capacitor (22 μ F) can be avoided. In the preregulated 1.85-V mode, the regulator providing the 1.85 V must have the following characteristics: - Load current capacity ≥900 mA - Line and load regulation with <2% ripple with 500-mA step current and settling time of < 4 μs with the load step #### Note The regulator must be placed as close as possible to the device so that the IR drop to the device is very low. #### 9.3 Low-Power Operating Modes This section describes the low-power modes supported by the device to optimize battery life. #### 9.3.1 Low-Power Deep Sleep The low-power deep-sleep (LPDS) mode is an energy-efficient and transparent sleep mode that is entered automatically during periods of inactivity based on internal power optimization algorithms. The device can wake up in less than 3 ms from the internal timer or from any incoming host command. Typical battery drain in this mode is 115 μ A. During LPDS mode, the device retains the software state and certain configuration information. The operation is transparent to the external host; thus, no additional handshake is required to enter or exit LPDS mode. #### 9.3.2 Hibernate The hibernate mode is the lowest power mode in which all of the digital logic is power-gated. Only a small section of the logic powered directly by the main input supply is retained. The RTC is kept running and the device wakes up once the nHIB line is asserted by the host driver. The wake-up time is longer than LPDS mode at approximately 50 ms. The typical battery drain in this mode is $4.5 \, \mu A$. #### **Note** Wake-up time can be extended depending on the service-pack size. #### 9.3.3 Shutdown The shutdown mode is the lowest power-mode system-wise. All device logics are off, including the real-time clock (RTC). The wake-up time in this mode is longer than hibernate at approximately 1.1 s. The typical battery drain in this mode is $1 \, \mu A$. Submit Document Feedback ## 9.4 Memory #### 9.4.1 External Memory Requirements The CC3120R device maintains a proprietary file system on the serial flash. The CC3120R file system stores the service pack file, system files, configuration files, certificate files, web page files, and user files. By using a format command through the API, users can provide the total size allocated for the file system. The starting address of the file system cannot be set and is always at the beginning of the serial flash. The applications microcontroller must access the serial flash memory area allocated to the file system directly through the CC3120R file system. The applications microcontroller must not access the serial flash memory area directly. The file system manages the allocation of serial flash blocks for stored files according to download order, which means that the location of a specific file is not fixed in all systems. Files are stored on serial flash using human-readable filenames rather than file IDs. The file system API works using plain text, and file encryption and decryption is invisible to the user. Encrypted files can be accessed only through the file system. All file types can have a maximum of 100 supported files in the file system. All files are stored in 4-KB blocks and thus use a minimum of 4KB of Flash space. Fail-safe files require twice the original size and use a minimum of 8KB. Encrypted files are counted as fail-safe in terms of space. The maximum file size is 1MB. 表 9-2 lists the minimum required memory consumption under the following assumptions: - · System files in use consume 64 blocks (256KB). - · Vendor files are not taken into account. - · Gang image: - Storage for the gang image is rounded up to 32 blocks (meaning 128KB resolution). - Gang image size depends on the actual content size of all components. Additionally, the image should be 128KB aligned so unaligned memory is considered lost. Service pack, system files, and the 128KB aligned memory are assumed to occupy 256KB. - All calculations consider that the restore-to-default is enabled. ITEM CC3120 [KB] File system allocation table 20 System and configuration files 256 Service Pack 264 256 Gang image size Total 796 Minimal Flash size 8MBit Recommended Flash size 16MBit 表 9-2. Recommended Flash Size #### Note The maximum supported serial flash size is 32MB (256Mb). See the *Using Serial Flash on CC3120/CC3220 SimpleLink™ Wi-Fi*® *and Internet-of-Things Devices* application report. ## 9.5 Restoring Factory Default Configuration The device has an internal recovery mechanism that allows rolling back the file system to its predefined factory image or restoring the factory default parameters of the device. The factory image is kept in a separate sector on the serial flash in a secure manner and cannot be accessed from the host processor. The following restore modes are supported: - None—no factory restore settings - Enable restore of factory default parameters - Enable restore of factory image and factory default parameters The restore process is performed by pulling or forcing SOP[2:0] = 110 pins and toggling the nRESET pin from low to high. The process is fail-safe and resumes operation if a power failure occurs before the restore is finished. The restore process typically takes about 8 seconds, depending on the attributes of the serial Flash vendor. Submit Document Feedback ## 10 Applications, Implementation, and Layout #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ## **10.1 Application Information** ## 10.1.1 Typical Application—CC3120R Wide-Voltage Mode ☑ 10-1 shows the typical application schematic using the CC3120R device in the wide-voltage mode of operation. For a full operation reference design, refer to the BoosterPack that uses the CC3120R device (see CC3120 SimpleLink™ and Internet of Things Hardware Design Files). 表 10-1 lists the bill of materials for an application using the CC3120R device in wide-voltage mode. 図 10-1. CC3120R Wide-Voltage Mode Application Circuit ## 表 10-1. Bill of Materials for CC3120R in Wide-Voltage Mode | QUANTI | | | MANUFACTUR | ue-voitage mode | | | | | | |--------|---|-------------------------|---------------------------------------|--------------------------|---|--|--|--|--| | TY | DESIGNATOR | VALUE | ER | PART NUMBER | DESCRIPTION | | | | | | 1 | C1 | 0.5 pF | Murata | GRM1555C1HR50BA01
D | Capacitor, Ceramic, 0.5 pF, 50 V, ±20%, C0G/NP0, 0402 | | | | | | 2 | C2, C3 | 100 μF | Taiyo Yuden | LMK325ABJ107MMHT | Capacitor, Ceramic, 100 µF, 10 V, ±20%, X5R, AEC-Q200 Grade 3, 1210 | | | | | | 3 | C4, C5, C6 | 4.7 μF | TDK | C1005X5R0J475M050B
C | Capacitor, Ceramic, 4.7 μF, 6.3 V, ±20%, X5R, 0402 | | | | | | 11 | C7, C8, C9, C11,
C13, C14, C15,
C16, C18, C19,
C27 | 0.1 µF | TDK | C1005X5R1A104K050B
A | Capacitor, Ceramic, 0.1 μF, 10 V, ±10%, X5R, 0402 | | | | | | 3 | C10, C17, C22 | 10 μF | Murata | GRM188R60J106ME47
D | Capacitor, Ceramic, 10 μF, 6.3 V, ±20%, X5R, 0603 | | | | | | 1 | C12 | 1 μF | TDK | C1005X5R1A105K050B
B | Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402 | | | | | | 2 | C20, C21 | 22 µF | TDK | C1608X5R0G226M080A
A | Capacitor, Ceramic, 22 µF, 4 V, ±20%, X5R, 0603 | | | | | | 2 | C23, C24 | 10 pF | Johanson
Technology | 500R07S100JV4T | Capacitor, Ceramic, 10 pF, 50 V, ±5%, C0G/NP0, 0402 | | | | | | 2 | C25, C26 | 6.2 pF | Murata | GRM1555C1H6R2CA01
D | Capacitor, Ceramic, 6.2 pF, 50 V, ±5%, C0G/NP0, 0402 | | | | | | 1 | E1 | 2.45-
GHz
Antenna | Taiyo Yuden | AH316M245001-T | ANT Bluetooth W-LAN Zigbee® WiMAX™, SMD | | | | | | 1 | FL1 | 1.02 dB | TDK | DEA202450BT-1294C1-
H | Multilayer Chip Band Pass Filter For 2.4GHz W-LAN/Bluetooth, SMD | | | | | | 1 | L1 | 3.3 nH | Murata | LQG15HS3N3S02D | Inductor, Multilayer, Air Core, 3.3 nH, 0.3 A, 0.17 ohm, SMD | | | | | | 2 | L2, L4 | 2.2 µH | Murata | LQM2HPN2R2MG0L | Inductor, Multilayer,
Ferrite, 2.2 µH, 1.3 A, 0.08 ohm, SMD | | | | | | 1 | L3 | 1 µH | Murata | LQM2HPN1R0MG0L | Inductor, Multilayer, Ferrite, 1 µH, 1.6 A, 0.055 ohm, SMD | | | | | | 1 | R1 | 10 k | Vishay-Dale | CRCW040210K0JNED | RES, 10 k, 5%, 0.063 W, 0402 | | | | | | 1 | R11 | 2.7 k | Vishay-Dale | CRCW04022K70JNED | RES, 2.7 k, 5%, 0.063 W, 0402 | | | | | | 10 | R2, R3, R4, R5,
R6, R7, R9, R10,
R12, R13 | 100 k | Vishay-Dale | CRCW0402100KJNED | RES, 100 k, 5%, 0.063 W, 0402 | | | | | | 1 | R14 | 1.0 k | Vishay-Dale | CRCW04021K00JNED | RES, 1.0 k, 5%, 0.063 W, 0402 | | | | | | 1 | U1 | MX25R | Macronix
International Co.,
LTD | MX25R1635FM1IL0 | Ultra-Low Power, 16-Mbit [x 1/x 2/x 4] CMOS
MXSMIO
(Serial Multi I/O) Flash Memory, SOP-8 | | | | | | 1 | U2 | CC3120 | Texas
Instruments | CC3120RNMRGK | SimpleLink™ Wi-Fi [®] Network Processor, internet-
of-things Solution for MCU Applications,
RGK0064B | | | | | | 1 | Y1 | Crystal | Abracon
Corporation | ABS07-32.768KHZ-9-T | CRYSTAL, 32.768 kHz, 9 pF, SMD | | | | | | 1 | Y2 | Crystal | Epson | Q24FA20H0039600 | Crystal, 40 MHz, 8 pF, SMD | | | | | ## 10.1.2 Typical Application Schematic—CC3120R Preregulated, 1.85-V Mode ☑ 10-2 shows the typical application schematic using the CC3120R in preregulated, 1.85-V mode of operation. For addition information on this mode of operation please contact your TI representative. 図 10-2. CC3120R Preregulated 1.85-V Mode Application Circuit 表 10-2 lists the bill of materials for an application using the CC3120R device in preregulated 1.85-V mode. # 表 10-2. Bill of Materials for CC3120R in Preregulated, 1.85-V Mode | QUANTI | | | MANUFACTURE | | guiated, 1.65-v Mode | |---------------------|--|-------------------------|---------------------------------------|--------------------------|---| | TY DESIGNATOR VALUE | | VALUE | R | PART NUMBER | DESCRIPTION | | 1 | C1 | 0.5 pF | MuRata | GRM1555C1HR50BA
01D | Capacitor, Ceramic, 0.5 pF, 50 V, ±20%, C0G/NP0, 0402 | | 2 | C2, C3 | 100 µF | Taiyo Yuden | LMK325ABJ107MMHT | Capacitor, Ceramic, 100 µF, 10 V, ±20%, X5R, AEC-Q200 Grade 3, 1210 | | 3 | C4, C5, C6 | 4.7 µF | TDK | C1005X5R0J475M050
BC | Capacitor, Ceramic, 4.7 μF, 6.3 V, ±20%, X5R, 0402 | | 11 | C7, C8, C9, C11,
C14, C15, C16,
C17, C18, C19, C25 | 0.1 μF | TDK | C1005X5R1A104K050
BA | Capacitor, Ceramic, 0.1 μF, 10 V, ±10%, X5R, 0402 | | 2 | C10, C20 | 10 µF | MuRata | GRM188R60J106ME4
7D | Capacitor, Ceramic, 10 μF, 6.3 V, ±20%, X5R, 0603 | | 1 | C12 | 1 µF | TDK | C1005X5R1A105K050
BB | Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402 | | 1 | C13 | 22 µF | TDK | C1608X5R0G226M08
0AA | Capacitor, Ceramic, 22 μF, 4 V, ±20%, X5R, 0603 | | 2 | C21, C22 | 10 pF | Johanson
Technology | 500R07S100JV4T | Capacitor, Ceramic, 10 pF, 50 V, ±5%, C0G/NP0, 0402 | | 2 | C23, C24 | 6.2 pF | MuRata | GRM1555C1H6R2CA
01D | Capacitor, Ceramic, 6.2 pF, 50 V, ±5%, C0G/NP0, 0402 | | 1 | E1 | 2.45-
GHz
Antenna | Taiyo Yuden | AH316M245001-T | ANT Bluetooth W-LAN Zigbee® WiMAX™, SMD | | 1 | FL1 | 1.02 dB | TDK | DEA202450BT-1294C
1-H | Multilayer Chip Band Pass Filter For 2.4-GHz W-LAN/Bluetooth, SMD | | 1 | L1 | 3.3 nH | MuRata | LQG15HS3N3S02D | Inductor, Multilayer, Air Core, 3.3 nH, 0.3 A, 0.17 ohm, SMD | | 1 | L2 | 2.2 µH | MuRata | LQM2HPN2R2MG0L | Inductor, Multilayer, Ferrite, 2.2 µH, 1.3 A, 0.08 ohm, SMD | | 1 | R1 | 10 k | Vishay-Dale | CRCW040210K0JNE
D | Resistor, 10 k, 5%, 0.063 W, 0402 | | 10 | R2, R3, R4, R5, R6,
R7, R8, R9, R11,
R12 | 100 k | Vishay-Dale | CRCW0402100KJNE
D | Resistor, 100 k, 5%, 0.063 W, 0402 | | 1 | R10 | 2.7 k | Vishay-Dale | CRCW04022K70JNE
D | Resistor, 2.7 k, 5%, 0.063 W, 0402 | | 1 | R13 | 1.0 k | Vishay-Dale | CRCW04021K00JNE
D | Resistor, 1.0 k, 5%, 0.063 W, 0402 | | 1 | U1 | MX25R | Macronix
International Co.,
LTD | MX25R1635FM1IL0 | Ultra-Low Power, 16M-BIT [x 1/x 2/x 4] CMOS
MXSMIO
(Serial Multi I/O) Flash Memory, SOP-8 | | 1 | U2 | CC3120 | Texas
Instruments | CC3120RNMRGK | SimpleLink™ Wi-Fi®Network Processor, internet-of-
things Solution for MCU Applications, RGK0064B | | 1 | Y1 | Crystal | Abracon
Corportation | ABS07-32.768KHZ-9-
T | Crystal, 32.768 kHz, 9 pF, SMD | | 1 | Y2 | Crystal | Epson | Q24FA20H0039600 | Crystal, 40 MHz, 8 pF, SMD | ## 10.2 PCB Layout Guidelines This section details the PCB guidelines to speed up the PCB design using the CC3120R VQFN device. Follow these guidelines ensures that the design will minimize the risk with regulatory certifications including FCC, ETSI, and CE. For more information, see CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout Guidelines. #### 10.2.1 General PCB Guidelines Use the following PCB guidelines: - Verify the recommended PCB stackup in the PCB design guidelines, as well as the recommended layers for signals and ground. - Ensure that the PCB footprint of the VQFN follows the information in . - Ensure that the GND and solder paste of the VQFN PCB follow the recommendations provided in CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout Guidelines. - Decoupling capacitors must be as close as possible to the VQFN device. ## 10.2.2 Power Layout and Routing Three critical DC/DC converters must be considered for the CC3120R device. - Analog DC/DC converter - PA DC/DC converter - Digital DC/DC converter Each converter requires an external inductor and capacitor that must be laid out with care. DC current loops are formed when laying out the power components. #### 10.2.2.1 Design Considerations The following design guidelines must be followed when laying out the CC3120R device: - Route all of the input decoupling capacitors (C11, C13, and C18) on L2 using thick traces, to isolate the RF ground from the noisy supply ground. This step is also required to meet the IEEE spectral mask specifications. - Maintain the thickness of power traces to be greater than 12 mils. Take special consideration for power amplifier supply lines (pins 33, 40, 41, and 42), and all input supply pins (pins 37, 39, and 44). - Ensure the shortest grounding loop for the PLL supply decoupling capacitor (pin 24). - Place all decoupling capacitors as close to the respective pins as possible. - Power budget: The CC3120R device can consume up to 450 mA for 3.3 V, 670 mA for 2.1 V, and 700 mA for 1.85 V, for 24 ms during the calibration cycle. - Ensure the power supply is designed to source this current without any issues. The complete calibration (TX and RX) can take up to 17 mJ of energy from the battery over a time of 24 ms. - The CC3120R device contains many high-current input pins. Ensure the trace feeding these pins is capable of handling the following currents: - VIN DCDC PA input (pin 39) maximum is 1 A - VIN_DCDC_ANA input (pin 37) maximum is 600 mA - VIN_DCDC_DIG input (pin 44) maximum is 500 mA - DCDC_PA_SW_P (pin 40) and DCDC_PA_SW_N (pin 41) switching nodes maximum is 1 A - DCDC_PA_OUT output node (pin 42) maximum 1 A - DCDC ANA SW switching node (pin 38) maximum is 600 mA - DCDC_DIG_SW switching node (pin 43) maximum is 500 mA - VDD_PA_IN supply (pin 33) maximum is 500 mA ☑ 10-3 shows the ground routing for the input decoupling capacitors. 図 10-3. Ground Routing for the Input Decoupling Capacitors The ground return for the input capacitors are routed on L2 to reduce the EMI and improve the spectral mask. This routing must be strictly followed because it is critical for the overall performance of the device. #### 10.2.3 Clock Interfaces The following guidelines are for the slow clock. - The 32.768-kHz crystal must be placed close to the VQFN package. - Ensure that the load capacitance is tuned according to the board parasitics to the frequency tolerance is within ±150 ppm. - The ground plane on layer two is solid below the trace lanes and there is ground around these traces on the top layer. The following guidelines are for the fast clock. - The 40-MHz crystal must be placed close to the VQFN package. - Ensure that he load capacitance is tuned according to the board parasitics to the frequency tolerance is within ±100 ppm at room temperature. The total frequency across parts, temperature, and with aging, must be ±25 ppm to meet the WLAN specification. - Ensure that no high-frequency lines are routed close to the crystal routing to avoid noise degradation. - Ensure that crystal tuning capacitors are close to the crystal pads. - Make both traces (XTAL_N and XTAL_P) as close to parallel as possible and approximately the same length. - The ground plane on layer two is solid below the trace lines and that there is ground around these traces on the top layer. - See CC31xx & CC32xx Frequency Tuning for frequency tuning. #### 10.2.4 Digital Input and Output The following guidelines are for the digital I/O. - · Route SPI and UART lines away from any RF traces. - Keep the length of the high-speed lines as short as possible to avoid transmission line effects. - Keep the line lower than 1/10 of the rise time of the signal to ignore transmission line effects. This is required if the traces cannot be kept short. Place the resistor at the source end, closer to the device that is driving the signal. - Add a series-terminating resistor for each high-speed line (such as SPI_CLK or SPI_DATA) to match the driver impedance to the line. Typical terminating-resistor values range from 27 to 36 Ω for a 50-Ω line impedance. - Route high-speed lines with a ground reference plane continuously below it to offer good impedance throughout. This routing also helps shield the trace against EMI. - Avoid stubs on high-speed lines to minimize the reflections. If the line must be routed to multiple locations, use a separate line driver for each line. - If the lines are longer compared to the rise time, add series-terminating resistors near the driver
for each high-speed line to match the driver impedance to the line. Typical terminating-resistor values range from 27 to 36 Ω for a 50-Ω line impedance. #### 10.2.5 RF Interface The following guidelines are for the RF interface. Follow guidelines specified in the vendor-specific antenna design guides (including placement of the antenna). Also see CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout Guidelines for general antenna guidelines. - Ensure that the antenna is matched for 50-Ω. TI recommends using a Pi-matching network. - Ensure that the area underneath the BPF pads is grounded on layer one and layer two, and ensure that the minimum filter requirements are met. - Verify that the Wi-Fi RF trace is a 50-Ω, impedance-controlled trace with a reference to solid ground. - The RF trace bends must be made with gradual curves. Avoid using 90-degree bends. - The RF traces must not have sharp corners. - Do not place traces or ground under the antenna section. - The RF traces must have via stitching on the ground plane beside the RF trace on both sides. ## 11 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed in this section. ## 11.1 Development Tools and Software For the most up-to-date list of development tools and software, see the *CC3120 Tools & Software* product page. Users can also click the "Alert Me" button on the top right corner of the *CC3120 Tools & Software* page to stay informed about updates related to the CC3120MOD device. ## **Development Tools** SimpleLink[™] Wi-Fi[®] Starter Pro The supported devices are: CC3100, CC3200, CC3120R, and CC3220x. The SimpleLink ™ Wi-Fi® Starter Pro mobile App is a new mobile application for SimpleLink provisioning. The app goes along with the embedded provisioning library and example that runs on the device side (see SimpleLink™ Wi-Fi® CC3120 SDK plugin and TI SimpleLink ™ Wi-Fi® CC3220 Software Development Kit (SDK)). The new provisioning release is a TI recommendation for Wi-Fi provisioning using SimpleLink Wi-Fi products. The provisioning release implements advanced AP mode and SmartConfig™ technology provisioning with feedback and fallback options to ensure successful process has been accomplished. Customers can use both embedded library and the mobile library for integration to their end products. SimpleLink[™] Wi-Fi[®] CC3120 SDK plugin The CC3120R device is supported. The CC3120 SDK contains drivers, many sample applications for Wi-Fi features and internet, and documentation needed to use the CC3120 Internet-on-a chip™ solution. This SDK can be used with TI's MSP432P401R LaunchPad, or SimpleLink Studio, a PC tool that allows MCU development with CC3120. You can also use the SDK as example code for any platform. All sample applications in the SDK are supported on TI's MSP432P401R ultra-low power MCUs with Code Composer Studio IDE and TI RTOS. In addition, many of the applications support IAR. SimpleLink[™] Studio for CC31xx The CC3120R device is supported. SimpleLink Studio for CC31xx is a Windows®-based software tool used to aid in the development of embedded networking applications and software for microcontrollers. Using SimpleLink Studio for CC31xx, embedded software developers can develop and test applications using any desktop IDE, such as Visual Studio or Eclipse, and connect their applications to the cloud using the CC31xx BoosterPack™ Plug-in Module. The application can then be easily ported to any microcontroller. With the SimpleLink Wi-Fi CC31xx solution, customers now have the flexibility to add Wi-Fi to any microcontroller (MCU). This Internet-on-a-chip solution contains all you need to easily create IoT solutions: security, quick connection, cloud support, and more. For more information on CC31xx, visit SimpleLink™ Wi-Fi® Solutions. SimpleLink[™] Wi-Fi[®] Radio Testing Tool The supported devices are: CC3100, CC3200, and CC3220x. The SimpleLink™ Wi-Fi® Radio Testing Tool is a Windows-based software tool for RF evaluation and testing of SimpleLink Wi-Fi CC3120 and CC3220 designs during development and certification. The tool enables low-level radio testing capabilities by manually setting the radio into transmit or receive modes. Using the tool requires familiarity and knowledge of radio circuit theory and radio test methods. Created for the Internet of Things (IoT), the SimpleLink Wi-Fi CC31xx and CC32xx family of devices include on-chip Wi-Fi, Internet, and robust security protocols with no prior Wi-Fi experience needed for faster development. For more information on these devices, visit SimpleLink™ Wi-Fi® family, Internet-on-a chip™ solutions. CC3220 Software Development Kit (SDK) The CC3120R device is supported. The SimpleLink Wi-Fi CC3220 SDK contains drivers for the CC3220 programmable MCU, 30+ sample applications, and documentation needed to use the solution. The SDK also contains the Flash programmer, a command line tool for flashing software, configuring network and software parameters (SSID, access point channel, network profile, and so on), system files, and user files (certificates, web pages, and so on). This SDK can be used with TI's SimpleLInk Wi-Fi CC3220 LaunchPad™ development kit. The SDK has a variety of support offerings. All sample applications in the SDK are supported on the integrated Cortex-M4 processor with CCS IDE and no RTOS. In addition, a few of the applications support IAR, Free RTOS, and TI-RTOS. Uniflash Standalone Flash Tool for TI Microcontrollers (MCU), Sitara Processors & SimpleLink Devices CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs and on-board flash memory for Sitara processors. Uniflash has a GUI, command line, and scripting interface. CCS Uniflash is available free of charge. ## TI Designs and Reference Designs The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jumpstart your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. #### 11.2 Firmware Updates TI updates features in the service pack for this module with no published schedule. Due to the ongoing changes, TI recommends that the user has the latest service pack in their module for production. To stay informed, click the SDK "Alert me" button the top right corner of the product page, or visit SimpleLink™ Wi-Fi® CC3120 SDK plugin. #### **11.3 Device Nomenclature** To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of the CC3120R device and support tools (see 🗵 11-1). 図 11-1. CC3120R Device Nomenclature ## 11.4 Documentation Support To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (CC3120). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral follows. The following documents provide support for the CC3120 device. ## **Application Reports** Wi-Fi® Embedded Programming CC3120 and CC3220 SimpleLink™ CC3120 and CC3220 SimpleLink™ Wi-Fi® Embedded Programming Sub-System Power Management SimpleLink™ CC3120, CC3220 Wi- This application report describes the best practices for power Fi® Internet-on-a chip™ Networking management and extended battery life for embedded low-power Wi-Fi devices such as the SimpleLink™ Wi-Fi® Internet-on-a chip™ solution from Texas Instruments™. **Built-In Security Features** SimpleLink™ CC3120, CC3220 Wi- The SimpleLink™ Wi-Fi® CC3120 and CC3220 Internet-on-a chip™ Fi® Internet-on-a chip ™ Solution family of devices from Texas Instruments™ offer a wide range of built-in security features to help developers address a variety of security needs, which is achieved without any processing burden on the main microcontroller (MCU). This document describes these security-related features and provides recommendations for leveraging each in the context of practical system implementation. Air Update Device Provisioning SimpleLink™ Internet-of-Things Devices SimpleLink™ CC3120, CC3220 Wi- This document describes the OTA library for the SimpleLink™ Wi-Fi® Fi® and Internet of Things Over-the- CC3x20 family of devices from Texas Instruments™ and explains how to prepare a new cloud-ready update to be downloaded by the OTA library. SimpleLink™ CC3120, CC3220 Wi- This guide describes the provisioning process, which provides the Fi® Internet-on-a chip ™ Solution SimpleLink ™ Wi-Fi® device with the information (network name, password, and so forth) needed to connect to a wireless network. Transfer of TI's Wi-Fi® Alliance This document explains how to employ the Wi-Fi® Alliance (WFA) Certifications to Products Based on derivative certification transfer policy to transfer a WFA certification, already obtained by Texas Instruments, to a system you have developed. Using Serial Flash on SimpleLink™ This application note is divided into two parts. The first part provides CC3120 and CC3220 Wi-Fi® and important guidelines and best- practice design techniques to consider when choosing and embedding a serial Flash paired with the CC3120 and CC3220 (CC3x20) devices. The second part describes the file system, along with guidelines and considerations for system designers working with the CC3x20 devices. #### **User's Guides** Network Processor SimpleLink™ Wi-Fi® and Internet This document provides software (SW) programmers with all of the required of Things CC3120 and CC3220 knowledge for working with the networking subsystem of the SimpleLink™ Wi-Fi® devices. This guide provides basic guidelines for
writing robust, optimized networking host applications, and describes the capabilities of the networking subsystem. The guide contains some example code snapshots, to give users an idea of how to work with the host driver. More comprehensive code examples can be found in the formal software development kit (SDK). This guide does not provide a detailed description of the host driver APIs. SimpleLink ™ Wi-Fi[®] and IoT Solution CC3120 The SimpleLink™ Wi-Fi® CC3120 wireless network processor from Texas BoosterPack ™ Plug-In Module Instruments ™ provides users the flexibility to add Wi-Fi to any MCU. This user's guide explains the various configurations of the CC3120 BoosterPack ™ Plug-In Module. Wi-Fi® SimpleLink ™ Layout Guidelines CC3120 This document provides the design guidelines of the 4-layer PCB used for and CC3220 and IoT Solution the CC3120 and CC3220 SimpleLink™ Wi-Fi® family of devices from Texas Instruments™. The CC3120 and CC3220 devices are easy to lay out and are available in quad flat no-leads (QFNS) packages. When designing the board, follow the suggestions in this document to optimize performance of the board. SimpleLink ™ Wi-Fi[®] Internet-on-a-chip ™ SDK CC3120 This guide is intended to help users in the initial setup and demonstration of Solution the different demos in the CC3120 SDK. The guide lists the software and hardware components required to get started, and explains how to install the supported integrated development environment (IDE), SimpleLink CC3120 SDK, and the various other tools required. SimpleLink ™ Wi-Fi[®] CC3220 Solution Radio Tool and The Radio Tool serves as a control panel for direct access to the radio, and Internet-on-a-chip™ CC3120 and can be used for both the radio frequency (RF) evaluation and for certification purposes. This guide describes how to have the tool work seamlessly on Texas Instruments™ evaluation platforms such as the BoosterPack™ plus FTDI emulation board for CC3120 devices, and the LaunchPad ™ for CC3220 devices. SimpleLink ™ Wi-Fi® and CC3220 Mobile Applications CC3120 This guide describes TI's SimpleLink™ Wi-Fi® provisioning solution for Provisioning for mobile applications, specifically on the usage of the Android [™] and iOS[®] building blocks for UI requirements, networking, and provisioning APIs required for building the mobile application. UniFlash CC3120 and CC3220 This document describes the installation, operation, and usage of the SimpleLink ™ Wi-Fi® and SimpleLink ImageCreator tool as part of the UniFlash. Internet-on-a chip ™ Solution ImageCreator and Programming Tool #### **More Literature** RemoTI Manifest CC3120 SimpleLink™ WI-Fi® and Internet of Things CC3120 hardware design files. CC3120, CC3220 SimpleLink™ Wi-Fi® and Internet of Things Design Checklist ## 11.5 サポート・リソース TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 #### 11.6 Trademarks SimpleLink™, Internet-on-a chip™, SmartConfig™, テキサス・インスツルメンツ™, BoosterPack™, LaunchPad™, and TI E2E™ are trademarks of Texas Instruments. WPA[™], WPA2[™], WPA3[™], and are trademarks of Wi-Fi Alliance. E2E™ is a trademark of TI. WiMAX[™] are trademarks of WiMAX Forum. Wi-Fi® and Wi-Fi Direct® are registered trademarks of Wi-Fi Alliance. Bluetooth® is a registered trademark of Bluetooth SIG, Inc. Zigbee® are registered trademarks of Zigbee Alliance. Windows® is a registered trademark of Microsoft Inc. すべての商標は、それぞれの所有者に帰属します。 #### 11.7 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ## 11.8 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. ## 11.9 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 12 Mechanical, Packaging, and Orderable Information 12.1 Packaging Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 27-Jul-2021 #### PACKAGING INFORMATION | Orderable Device | Status
(1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|---------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | CC3120RNMARGKR | ACTIVE | VQFN | RGK | 64 | 2500 | RoHS & Green | NIPDAU NIPDAUAG | Level-3-260C-168 HR | -40 to 85 | CC3120R
NMA | Samples | | CC3120RNMARGKT | ACTIVE | VQFN | RGK | 64 | 250 | RoHS & Green | NIPDAU NIPDAUAG | Level-3-260C-168 HR | -40 to 85 | CC3120R
NMA | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE OPTION ADDENDUM** www.ti.com 27-Jul-2021 # **PACKAGE MATERIALS INFORMATION** www.ti.com 9-Aug-2022 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------
--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CC3120RNMARGKR | VQFN | RGK | 64 | 2500 | 330.0 | 16.4 | 9.3 | 9.3 | 1.1 | 12.0 | 16.0 | Q2 | | CC3120RNMARGKT | VQFN | RGK | 64 | 250 | 180.0 | 16.4 | 9.3 | 9.3 | 1.1 | 12.0 | 16.0 | Q2 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 9-Aug-2022 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | CC3120RNMARGKR | VQFN | RGK | 64 | 2500 | 367.0 | 367.0 | 38.0 | | CC3120RNMARGKT | VQFN | RGK | 64 | 250 | 210.0 | 185.0 | 35.0 | Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated