
Application Report
SPRA882A – June 2003

1

DSP/BIOS Hardware and Software UART Device Drivers
Software Development Systems

ABSTRACT

This application note describes the implementation of a DSP/BIOS device driver for both
hardware UARTs and software simulated UARTs. The hardware UART is the 16550-based
UART on the DSK 5402, while the software UART is one that is simulated on a DSP’s McBSP
channel. These drivers were written in conformance to the DSP/BIOS IOM device driver
model and APIs.

Features:

• Applications can use both the hardware and the software UART drivers seamlessly using the
same functions.

• The UARTs can be configured via device-specific configuration structures to suit a wide
range of application needs.

• Applications can access the drivers either via the GIO class driver interface or the traditional
SIO or PIP interfaces.

Contents

1 Overview 3.

2 Usage 6.
2.1 Configuration 6.
2.2 Device and Channel Parameters 6.

2.2.1 McBSP-Based Configuration Structure 7.
2.2.2 DSK 5402 Hardware UART-Based Configuration Structure 8.
2.2.3 Event Handling 9.

2.3 Control Commands 11.

3 UART Architecture 11.
3.1 Generic UART Implementation 11.

3.1.1 Data Structures 12.
3.2 Packet Processing 13.
3.3 Event Handlers 14.

3.3.1 cbLineStatus 14.
3.3.2 cbModemStatus 14.
3.3.3 cbRxHandler 14.
3.3.4 cbTxHandler 15.

3.4 Lower-Level UART Layer Interfaces 15.
3.4.1 UARTHW_attach 15.
3.4.2 UARTHW_resetDevice 16.

Trademarks are the property of their respective owners.

SPRA882A

2 DSP/BIOS Hardware and Software UART Device Drivers

3.4.3 UARTHW_getModemStatus 16.
3.4.4 UARTHW_setRTS 16.
3.4.5 UARTHW_setDTR 16.
3.4.6 UARTHW_setBreak 17.
3.4.7 UARTHW_txEmpty 17.
3.4.8 UARTHW_writeChar 17.

3.5 Hardware UART Implementation 17.
3.5.1 UARTHW_attach 17.
3.5.2 UARTHW_resetDevice 18.
3.5.3 UARTHW_getModemStatus 18.
3.5.4 UARTHW_setRTS 18.
3.5.5 UARTHW_setDTR 18.
3.5.6 UARTHW_setBreak 18.
3.5.7 UARTHW_txEmpty 18.
3.5.8 UARTHW_writeChar 18.
3.5.9 Hardware UART Interrupt Handling 18.

3.6 Software UART Implementation 19.
3.6.1 Background Information 19.

3.7 Software Line Driver 22.
3.7.1 UARTHW_attach 23.
3.7.2 UARTHW_resetDevice 23.
3.7.3 UARTHW_getModemStatus 23.
3.7.4 UARTHW_setRTS 23.
3.7.5 UARTHW_setDTR 23.
3.7.6 UARTHW_setBreak 23.
3.7.7 UARTHW_txEmpty 23.
3.7.8 UARTHW_writeChar 23.

3.8 Software UART Interrupt Handling 24.
3.8.1 Constraints 24.

4 References 24.
Appendix A Device Driver Data Sheet 25.

A.1 Device Driver Library Name (Generic Interface) 25.
A.2 Device Driver Library Name (Hardware Specific) 25.
A.3 DSP/BIOS Modules Used (Generic Interface) 25.
A.4 DSP/BIOS Modules Used (Hardware Specific) 25.
A.5 DSP/BIOS Objects Used (Generic Interface) 26.
A.6 DSP/BIOS Objects Used (Hardware Specific) 26.
A.7 CSL Modules Used (Generic Interface) 26.
A.8 CSL Modules Used (Hardware Specific) 26.
A.9 CPU Interrupts Used (Hardware Specific) 26.
A.10CPU Interrupts Used (Generic Interface) 26.
A.11 Peripherals Used (Generic Interface) 27.
A.12Peripherals Used (Hardware Specific) 27.
A.13Interrupt Disable Time 27.
A.14Memory Usage 27.

List of Figures

Figure 1 DSP/BIOS IOM Device Driver Model 4.

SPRA882A

3 DSP/BIOS Hardware and Software UART Device Drivers

Figure 2 UART Device Driver Partitioning 5.
Figure 3 UART Data Packet 20.
Figure 4 McBSP Receive Frame Structure 20.
Figure 5 Timing of a Signal-to-Serial Port Clock 21.
Figure 6 Line Driver Daughtercard Schematic 22.

List of Tables

Table 1. Control Commands 11.
Table A–1. Uarthw_dsk5402 Device Driver Memory Usage 27.
Table A–2. Uarthw_c5402_mcbsp Device Driver Memory Usage 28.
Table A–3. Uarthw_c5509_mcbsp and

Uarthw_c5510_mcbsp Device Driver Memory Usage 28.
Table A–4. Uarthw_c6x1x_mcbsp62 Device Driver Memory Usage 28.
Table A–5. Uarthw_c6x1x_mcbsp64 Device Driver Memory Usage 28.
Table A–6. Uartmd Device Driver Memory Usage on 54 Platform 28.
Table A–7. Uartmd Device Driver Memory Usage on 55 Platform 28.
Table A–8. Uartmd Device Driver Memory Usage on 62 Platform 29.
Table A–9. Uartmd Device Driver Memory Usage on 64 Platform 29.

1 Overview

The device driver described here is part of an IOM mini-driver. That is, it is implemented as the
lower layer of a 2-layer device driver model. The upper layer is called the class driver and can
be either the DSP/BIOS GIO, SIO/DIO, or PIP/PIO modules. The class driver provides an
independent and generic set of APIs and services for a wide variety of mini-drivers and allows
the application to use a common interface for I/O requests. Figure 1 shows the overall
DSP/BIOS device driver architecture. For more information about the IOM device driver model
as well as the GIO, SIO/DIO, and PIP/PIO modules, see the DSP/BIOS Device Driver
Developer’s Guide (SPRU616).

SPRA882A

4 DSP/BIOS Hardware and Software UART Device Drivers

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

Chip Support Library (CSL)

Class
Driver

Mini-
Driver

On-Chip Peripheral Hardware Off-Chip Peripheral Hardware

Figure 1. DSP/BIOS IOM Device Driver Model

This document deals with both the hardware and the software simulated UART drivers. As
shown in Figure 2, the UART mini-driver itself is split into two parts. The generic functionality of
the UART mini-driver is captured in the upper layer, which is named UARTMD. This layer also
implements the interfaces necessary to subscribe to the IOM mini driver interface.

The lower layer is UART device specific and is dependent on the nature of the UART peripheral.
All software simulated UARTs are implemented as libraries that are named
uarthw_xxx_mcbsp.lxx, while hardware UARTs are named uarthw_xxx.lxx. For example, the
lower layer of a McBSP-based UART mini-driver on the C5402 DSK would be called
uarthw_dsk5402_mcbsp.l54, and the hardware UART-based mini-driver would be called
uarthw_dsk5402.l54.

SPRA882A

5 DSP/BIOS Hardware and Software UART Device Drivers

Application/Framework

Class Driver

Codec-Specific Part of Mini-Driver

Generic Part of Mini-Driver

Chip Support Library

Mini-
Driver

Figure 2. UART Device Driver Partitioning

This approach of splitting the mini-driver into two parts allows us to abstract the generic UART
functionality in the common higher-level driver that will not change with hardware and platform.
The same code is portable across multiple platforms and can be used in conjunction with any
UART implementation. The only requirement is that the lower-level hardware specific
implementation should subscribe to and implement the interfaces defined by this generic UART
driver. In this way, the hardware specific driver can restrict itself to dealing with the device
specific requirements while the generic driver takes care of IOM interfacing, data buffering,
queue management, channel management and a host of other bookkeeping activities.

Applications that want to use UART mini drivers should use the generic UART mini-driver in
combination with a hardware-specific mini-driver based on their need. We recommend that
applications use the generic mini-driver provided with the Device Driver Developer’s Kit. For the
device specific layer, you can use a TI provided driver if available, or you can create your own
drivers based on the defined interfaces. This way, it is easier for application writers to create
their own hardware specific drivers based on their requirements without having to worry about
the IOM interfacing, data buffering, queue management, channel management and other
generic book keeping activities.

SPRA882A

6 DSP/BIOS Hardware and Software UART Device Drivers

2 Usage

This section of the document deals with the configuration of the driver using CDB, the device
specific configuration parameters which can be set by the application and the functionality
exposed by the driver to the application.

2.1 Configuration

To add this device driver to the DSP/BIOS Configuration tool, open the configuration tool,
right-click on the User-Defined Devices icon under the Device Drivers section and select Insert
UDEV. From the Objects menu (or by right-clicking on the object), rename the object from UDEV
to a unique name for the device driver. Open the Properties dialog for the device you created by
right-clicking on the object and modify its properties as follows. This section only gives the
configuration for a driver configured to be used via the GIO interface. For details on how to
configure the driver for use with SIO or PIP refer to the appropriate documentation.

• Init function table: _UARTMD_init

• Function table ptr: _UARTMD_Fxns

• Function table type: Select IOM_Fxns. For SIO based usage this will be DEV_Fxns.

• Device ID: N/A, not used by the driver

• Device params ptr: A pointer to an optional device configuration structure. This structure
contains fields for the UARTMD code and a pointer to an implementation-specific structure.
For the 16550 based UART driver on the DSK 5402, this is a pointer to an object of type
UARTHW_DSK5402_Params as defined in the header file uarthw_dsk5402.h. For a McBSP
based UART driver, is a pointer to an object of type UARTHW_MCBSP_Params which is
defined in the header file uarthw_mcbsp.h. If not specified, a default configuration structure
shall be used which is device specific. Refer to the documentation in the device specific
sections to find out more about the default configuration. More information regarding device
parameter can be found in the readme.txt located in the mini-driver specific directory.

• Device global data ptr: N/A Not used by this driver.

2.2 Device and Channel Parameters

The driver parameters structure allows a user to specify in the DSP/BIOS Configuration tool the
driver specific parameters when the driver is initialized. This configuration structure is defined as
follows:

typedef struct UARTMD_DevParams {

 Int versionId;

 Bool packedChars; /* only used for c55xx and c54xx */

 Ptr uarthwParams; /* pointer to UARTHW–specific params */

} UARTHW_DevParams;

• versionId: Version number of the driver.

SPRA882A

7 DSP/BIOS Hardware and Software UART Device Drivers

• packedChars: This field is only used by the C54x and C55x versions of this driver. If
packedChars is TRUE, the driver will output all 16-bits of a DSP word (the low 8 bits are
output first, followed by the high eight bits). The minimum addressable unit of memory for the
C54x and C55x is 16 bits, but typical UART devices operate on 8-bit bytes. This flag is used
specify whether the driver should output only the 8 low bits of a word or all 16 bits of the
word. For ASCII or terminal based applications, this flag should be set to FALSE. The default
value for this field is FALSE. This field is ignored by C6x versions of this driver.

• uarthwParams: This field is a pointer to the UARTHW implementation-specific configuration
structure. If this field is NULL, the UARTHW code will use a default values for the UART
configuration. The UARTHW parameter structures for the supported UARTHW
implementations are described in the next section.

2.2.1 McBSP-Based Configuration Structure

The McBSP based UART driver’s configuration structure is defined as follows:

/* Interrupt mask definition */
#ifdef _6x_
#include <csl_stdinc.h> /* for Uint32 */
typedef Uns UARTHW_MCBSP_IntrMask;
#endif
#ifdef _54_
#include <csl_stdinc.h>
typedef struct _UARTHW_MCBSP_IntrMask {
 Uns rxIntrMask;
 Uns txIntrMask;
}UARTHW_MCBSP_IntrMask;
#endif
#ifdef _55_
#include <csl_std.h>
typedef struct _UARTHW_MCBSP_IntrMask {
 Uns rxIerMask[2];
 Uns txIerMask[2];
}UARTHW_MCBSP_IntrMask;
#endif

typedef struct UARTHW_MCBSP_Params {

 Uns mcbspId; /* McBSP port id */

 Uns dmaRxId; /* DMA channel id (C5000 only) */

 Uns dmaTxId; /* DMA channel id (C5000 only) */

 Uint32 mcbspClkIn; /* McBSP frequency */

 Uint32 baud; /* baud rate */

 UARTHW_MCBSP_IntrMask intrMask;

} UARTHW_MCBSP_Params;

• mcbspId: The McBSP port number to use to simulate the UART. This allows the user to
specify a port other than the default.

• dmaRxId: The DMA channel ID to be used for receiving UART data. This is not used on
C6000 DSPs.

SPRA882A

8 DSP/BIOS Hardware and Software UART Device Drivers

• dmaTxId: The DMA channel id to be used for transmitting UART data. This is not used on
C6000 DSPs.

• mcbspClkIn: The input frequency to the McBSP. The McBSP can be driven either by the
CPU clock or an external clock.

• baud: The desired baud rate for the simulated UART.

• intrMask: Interrupt mask, set in the ISR

2.2.2 DSK 5402 Hardware UART-Based Configuration Structure

The DSK 5402 hardware UART driver’s configuration structure is defined as follows:

typedef struct UARTHW_DSK5402_Params {

 /* Flow Control Parameters */

 UARTHW_DSK5402_FlowControl flowControl;

 /* Communication Parameters */

 UARTHW_DSK5402_Parity parity;

 UARTHW_DSK5402_WordLen wordSize;

 UARTHW_DSK5402_StopBits stopBits;

 UARTHW_DSK5402_Baud baud;

 Uns intrMask;

} UARTHW_DSK5402_Params;

• flowControl: The type of flow control to be used. It can be one of the following values:

UARTHW_DSK5402_FLOW_NONE (No flow control)

UARTHW_DSK5402_FLOW_AFE_RTSCTS (Auto flow control with RTS/CTS enabled)

UARTHW_DSK5402_FLOW_AFE_CTS (Auto flow control with CTS enabled)

• wordSize: The word size to be used. It can be one of the following values:

UARTHW_DSK5402_WORD8 (8 bits per word)

UARTHW_DSK5402_WORD7 (7 bits per word)

• parity: Parity can have the following values:

UARTHW_DSK5402_DISABLE_PARITY

UARTHW_DSK5402_EVEN_PARITY

UARTHW_DSK5402_ODD_PARITY

• stopBits: This specifies the number of stop bits to be used for communication. The following
values are possible:

UARTHW_DSK5402_STOP1

UARTHW_DSK5402_STOP2

SPRA882A

9 DSP/BIOS Hardware and Software UART Device Drivers

• baud: This specifies the baud rate to be used for communication. It can have the following
values:

UARTHW_DSK5402_BAUD_19200 (baud of 19200)

UARTHW_DSK5402_BAUD_38400 (baud of 38400)

UARTHW_DSK5402_BAUD_57600 (baud of 57600)

UARTHW_DSK5402_BAUD_115200 (baud of 115200)

If the application does not specify any configuration structure, a default configuration structure is
used which specifies:

– baud to 115200

– 8-bit word size

– one stop bit

– no parity

– no flow control

This can be obtained using the macro UARTHW_DSK5402_DEFAULTPARAMS defined in the
device specific header file uarthw_dsk5402.h

• intrMask: Interrupt mask, set in the ISR.

2.2.3 Event Handling

The application can register an application-supplied callback with the driver along with an event
mask. The driver will notify the application through this callback whenever an event of interest
occurs. The application can register the callback via a control call as described earlier. The
following sections describe the application supplied callback and the notify structure used to
supply the callback and the event mask.

2.2.3.1 Application-Supplied Callback

Description The callback function to be supplied by the application has the following
prototype:

Function Prototype typedef Void (*UARTMD_TnotifyHandler)(Uns evtStatus,
Uns val);

Arguments

evtStatus This specifies the event of interest to the application,
which triggered the notification.

val Holds a value that needs to be passed to the callback
function based on the type of event that was generated.

Return Value none

2.2.3.2 UARTMD_NotifyStruct

The application can register with the UART driver for certain events of interest. The UART driver
will invoke the application-supplied callback when any of the events of interest occur. The
structure used is as shown below

SPRA882A

10 DSP/BIOS Hardware and Software UART Device Drivers

typedef struct UARTMD_NotifyStruct _{

UARTMD_Tnotifyhandler notifyFunc;

Uns evtmask;

} UARTMD_NotifyStruct;

• notifyFunc: is the application supplied callback function.

• evtmask: indicates the events in which the application is interested. The application can
choose from the following events.

UARTMD_EVT_CTSCHANGE (CTS line status change)

UARTMD_EVT_DSRCHANGE (DSR line status change)

UARTMD_EVT_BREAK (Detect a Break)

UARTMD_EVT_PERR (Parity Error)

UARTMD_EVT_FERR (Framing Error)

UARTMD_EVT_OERR (Overrun Error)

UARTMD_EVT_BERR (Buffer Overflow Error)

SPRA882A

11 DSP/BIOS Hardware and Software UART Device Drivers

2.3 Control Commands

Table 1. Control Commands

Command Argument Description

Supported
on H/W
UARTs?

Supported
on S/W
UARTs?

IOM_CHAN_TIMEDOUT Ignored Typically issued by IOM layer
when a timeout is encountered on
a synchronous call. This call
cleans up request queue at the
UART driver. Not usually issued by
application.

Yes Yes

UARTMD_REGISTER_NOTIFY Pointer to
UARTMD_NotifyStruct
which contains the event
mask and callback
function to be invoked
when the said event
occurs

Registers an application-supplied
callback with the driver along with
an event mask. The driver will
notify the application through this
callback whenever an event of
interest occurs. The event mask
can be a logical OR of the event
values as defined by
UARTMD_EventMask in the
UART-specific header file uartmd.h

Yes Yes

UARTMD_SETBREAK The break value either 0
or 1

If arg value is 1, then break is
turned on. If arg value is 0, then
break is turned off.

Yes Yes

UARTMD_GETMODEMSTATUS Pointer to a Uns which
stores the retrieved
modem status

Retrieves modem status for UART
device.

Yes No

UARTMD_SETRTS The RTS value to set
either a 0 or a 1.

This call turns on or off the RTS
line.

Yes No

UARTMD_SETDTR The DTR value to set
either a 0 or a 1.

This call turns on or off the DTR
line.

Yes No

3 UART Architecture

The following sections describe the generic UART layer implementation, data structures used
internally by the generic higher-level layer and the interfaces defined for the lower level drivers.
Finally, we describe the implementation details for the hardware based and software based
UART drivers.

3.1 Generic UART Implementation

The generic UART layer is the higher-level layer that exposes the UART interface to the
application world. It implements the functions necessary to support the IOM interface, handles
events coming from the low level drivers in a generic way and interfaces with the low level
drivers to transmit and receive data.

SPRA882A

12 DSP/BIOS Hardware and Software UART Device Drivers

3.1.1 Data Structures

The UART driver internally maintains the device context and state information using the
UartPortObj structure. The structure is as shown

3.1.1.1 UART Port Object

typedef struct UartPortObj {

 UARTMD_TnotifyHandler notifyFunc;

 Uns evtMask;

 UartChanObj chans[NUMCHANS];

} UartPortObj, *UartPortHandle;

• notifyFunc: the callback supplied by the application to the mini-driver to be notified of
certain events of interest to the application. This field and the evtMask field are initialized
when the application calls mdControlChan (via SIO_ctrl, GIO_control or PIO_ctrl).

• evtMask: The application specifies which events it would like to be notified about via the
mdControlChan function. evtMask is a bit mask that holds the application specified value.

• chans[NUMCHANS]: Channel structures for the input and output channel associated with
the device. This mini driver supports one input channel and one output channel, so
NUMCHANS is set to 2.

3.1.1.2 UART Channel Object

The UART driver internally maintains the channel context and state information using the
UartChanObj structure. The pointer to this structure is returned as the handle to the IO manager
upon a device open. The structure is as shown below.

typedef struct UartChanObj

{

 Uns inUse; /* TRUE if channel is in use */

 Int mode; /* INPUT or OUTPUT */

 IOM_Packet dataPacket; /* current active I/O Packet

 Char *bufptr; /* pointer within current buffer */

 Uns bufcnt; /* size of remaining I/O job */

 QUE_Obj pendlist; /* IOM_Packets pending I/O go here */

 CIRC_Obj circ; /* Circular Buffer */

 IOM_TiomCallback cbFxn; /* to notify client when I/O complete */

 Ptr cbArg; /* argument for cbFxn() */

#if SUPPORTPACKEDCHARS

 Bool packedChars; /* TRUE => output all 16 bits */

 Bool halfWay; /* TRUE if we’re between 1/2 words */

 Char halfWord; /* holds 1/2 word */

#endif

} UartChanObj, *UartChanHandle;

SPRA882A

13 DSP/BIOS Hardware and Software UART Device Drivers

• inUse: indicates whether a channel is currently being used.

• mode: indicates the mode in which the device has been opened: input or output.

• dataPacket: indicates the current active packet.

• bufptr: address for the current packet

• bufcnt: size of the current packet

• circ: the internal ring buffer being maintained by the UART driver to buffer the data received
when an application read is not pending.

• cbFxn: the class-driver supplied callback routine for the mini-driver.

• cbArg: the class-driver supplied callback argument for the mini-driver.

• packedChars: indicates whether driver should output all 16 bits of a word or only the low
8 bits. PackedChars is only used for 54x and 55x. packedChars is set to the value specified
by the UARTMD_DevParams parameter in the mini-driver’s mdBindDev function.

• halfWay: used only when packedChars is TRUE. Halfway is set to TRUE after driver outputs
or inputs the first 8 bits of a 16-bit word.

• halfWord: halfWord is only used when packedChars is TRUE. HalfWord is valid when
halfway is TRUE. HalfWord holds the high 8 bits of the 16-bit word for output or the low 8 bits
of an input word.

3.2 Packet Processing

The mini-driver interface function mdSubmitchan will be called by the class driver with a
command embedded in the request packet to perform a read, a write, channel flush, or channel
abort. Hardware interrupts will then be disabled for the duration of the processing of the packet.
For the case of a request to read or write, the request packet will be put on the queue that was
attached to the channel on which the request was made. If there are no other packets in
process, the new request will be processed immediately. Otherwise, the request will remain on
the queue until the request packets ahead of it on the queue are processed. Packets are
processed in sequence by simply taking them off the queue one by one and setting up a
transfer.

When packets are submitted to the driver with a command of Flush, all pending input jobs are to
be completed in the order they were submitted with a status of IOM_ABORT and all output jobs
are to be completed routinely.

When packets are submitted to the driver with a command of Abort, all pending calls are
completed in the order they were submit with a status of IOM_ABORTED.

When a read request is made to the UART mini-driver and no requests are pending, the UART
driver sets up the packet buffer as the source for further data transmission. If the packet buffer
size is 0 then function returns IOM_COMPLETED. If the internal circular buffer is empty, then
function returns with IOM_PENDING. Otherwise, a data character will be read from the internal
circular buffer until the packet has no more characters or the lower-lever circular buffer is empty.

When a write request is made to the UART mini driver and no requests are pending, the UART
driver sets up the packet buffer as the source for further data transmission. If the packet buffer
size is 0 then function returns IOM_COMPLETED. If the internal circular buffer cannot accept
any more data then function returns with IOM_PENDING. Otherwise, a data character will be
written into the internal circular buffer until the packet has no more characters or the lower-lever
circular buffer cannot accept any more characters.

SPRA882A

14 DSP/BIOS Hardware and Software UART Device Drivers

3.3 Event Handlers

During the mdBindDev call, the generic UART layer registers a set of functions with the
lower-level hardware-specific drivers to notify it of events related to the UART. These four event
handlers are invoked due to line status changes, modem status changes, receipt of a new
character and when the transmit buffer is empty. The four event handlers are implemented in the
generic UART layer. This section describes these handler functions further.

3.3.1 cbLineStatus

Description The lower layer invokes this function to notify the generic UART layer of a
change in line status. This is typically used by the UART driver to notify the
application layer when it registers for notifications on line status changes.

Function Prototype Void cbLineStatus (UartPortHandle port, Int lsrVal)

Arguments

port This is a mini driver device object, which identifies the
UART device.

lsrVal This indicates the line status register value at the time of
the interrupt.

3.3.2 cbModemStatus

Description The lower layer invokes this function to notify the generic UART layer of a
change in modem status. This is typically used by the UART driver to notify
the application layer when it registers for notifications on modem status
changes.

Function Prototype Void cbModemStatus (UartPortHandle port, Int msrVal)

Arguments

port This is a mini driver device object, which identifies the
UART device.

msrVal This indicates the modem status register value at the time
of the interrupt.

3.3.3 cbRxHandler

Description The lower layer invokes this function to notify the generic UART layer of a new
character that has been received. This is the main receive data processing
routine where the received character is stored in the circular buffer if no
request is pending, or transferred to an active request’s buffer directly if a
read request is pending.

Function Prototype Void cbRxHandler (UartPortHandle port, Int c)

Arguments

port This is a mini driver device object, which identifies the
UART device.

c This indicates the new character that has been received.

SPRA882A

15 DSP/BIOS Hardware and Software UART Device Drivers

3.3.4 cbTxHandler

Description The lower layer invokes this function to notify the generic UART layer of buffer
empty condition. This signals to the upper layer that it can transfer the next
character if it has one to be transferred. This is the main transmit data
processing routine where the next character to transmit is retrieved and sent.
This routine can also be called from the submit routine when a write request
is issued if no other write request is pending.

Function Prototype Void cbTxHandler (UartPortHandle port)

Arguments

3.4 Lower-Level UART Layer Interfaces

The generic UART layer communicates with the lower level UART driver through a set of
well-defined generic functions. All UART device driver writers who wish to write only the low
level UART layer should subscribe to this interface. These functions are described in the
sections that follow.

3.4.1 UARTHW_attach

Description The generic UART layer invokes this function when the driver’s bind call is
called. UART device driver writers who write only the low level drivers as per
this interface are expected to plug in the device-specific interrupt handler,
enable the interrupt and configure the device to the settings given in the call.
This function is called during initialization of the DSP/BIOS RTOS and all
restrictions that apply within DSP/BIOS initialization apply here. The function
prototype is shown below:

Function Prototype Int UARTHW_attach (Ptr attrs, Ptr cbArg,
UARTHW_Tcallback *cbFxns)

Arguments

attrs This is the hardware driver specific configuration
parameter structure. This is either
UARTHW_MCBSP_Params structure or the
UARTHW_DSK5402_Params structure based on the
hardware it supports.

cbArg This is a callback argument that is passed back when the
low level driver invokes the event handlers of the generic
UART layer. This is the device object pointer of the
generic UART layer that is used by the generic UART
layer in the context of the event handlers.

cbFxns This is a table of function pointers corresponding to
handlers for line status change, modem status change,
new character received and transmit buffer empty
condition. These handlers were discussed previously.

Return Value This function returns IOM_COMPLETE on success or an error value if
some of the settings are not valid.

SPRA882A

16 DSP/BIOS Hardware and Software UART Device Drivers

3.4.2 UARTHW_resetDevice

Description The generic UART layer invokes this function when the UART driver wants
to reset the device. This may be in response to a device timeout condition that
resulted in the class driver issuing an IOM_CHAN_TIMEDOUT call to the
UART mini driver. The function prototype is shown below:

Function Prototype Void UARTHW_resetDevice ()

Arguments none

Return Value none

3.4.3 UARTHW_getModemStatus

Description This function is invoked by the generic UART layer when the UART driver
wants to obtain the modem status either in response to an application request
or internally. The function prototype is shown below:

Function Prototype Int UARTHW_getModemStatus (Char * pmodemStatus)

Arguments

pmodemStatus This holds the address of the location where the modem
status value will be placed.

Return Value IOM_COMPLETE on success or an error value if not supported.

3.4.4 UARTHW_setRTS

Description This function is invoked by the generic UART layer when the UART driver
wants to set or clear the RTS line. This will be in response to an application
request. The function prototype is shown below:

Function Prototype Int UARTHW_setRTS (Int rtsVal)

Arguments

rtsVal This indicates whether the RTS line has to be set or
cleared based on whether it is one or zero.

Return Value IOM_COMPLETE on success or an error value if not supported.

3.4.5 UARTHW_setDTR

Description This function is invoked by the generic UART layer when the UART driver
wants to set or clear the DTR line. This will be in response to an application
request. The function prototype is shown below:

Function Prototype Int UARTHW_setDTR (Int dtrVal)

Arguments

dtrVal This indicates whether the DTR line has to be set or
cleared based on whether it is one or zero.

Return Value IOM_COMPLETE on success or an error value if not supported.

SPRA882A

17 DSP/BIOS Hardware and Software UART Device Drivers

3.4.6 UARTHW_setBreak

Description This function is invoked by the generic UART layer when the UART driver
wants to set or clear the break condition. This will be in response to an
application request. The function prototype is shown below:

Function Prototype Int UARTHW_setBreak (Int breakVal)

Arguments

breakVal This indicates whether the break condition has to be set or
cleared based on whether it is one or zero.

Return Value IOM_COMPLETE on success or an error value if not supported.

3.4.7 UARTHW_txEmpty

Description This function is invoked by the generic UART layer when the UART driver
wants to know if the transmit buffer is empty. The function prototype is shown
below:

Function Prototype Int UARTHW_txEmpty ()

Return Value A non-zero return value indicates that transmit buffer is empty and a zero
return value indicates it is full.

3.4.8 UARTHW_writeChar

Description This function is invoked by the generic UART layer when the UART driver
wants to write a character to the UART device. The function prototype is
shown below:

Function Prototype Void UARTHW_writeChar (Char c)

Arguments

c The character to write.

Return Value none

3.5 Hardware UART Implementation

This section discusses the functions implemented by the hardware UART. In our case this is
derived from the UART implementation on the DSK 5402 for a 16550 based UART. This section
also describes the interrupt handling in the lower layer for this implementation.

3.5.1 UARTHW_attach

The DSK 5402 based 16550 UART driver plugs in the interrupt handler for the interrupt vector
17. It then sets up the baud rate, configures the communication parameters and sets up the
FIFO for the UART. In our driver, the FIFO is disabled. Interrupts are then enabled for all events
of interest from the UART. The flow control settings are also set up. The communication and flow
control settings should be provided by the application through the configuration parameters
structure. If not provided, a default setting of 115200 baud, 8-bit word size , no parity, 1 stop bit
and no flow control is assumed. This driver always returns success from this routine.

SPRA882A

18 DSP/BIOS Hardware and Software UART Device Drivers

3.5.2 UARTHW_resetDevice

The DSK 5402 based 16550 UART driver clears the FIFO through the FIFO control register.

3.5.3 UARTHW_getModemStatus

The DSK 5402 based 16550 UART driver reads the modem status register and returns this
value.

3.5.4 UARTHW_setRTS

The DSK 5402 based 16550 UART driver sets the RTS line using the modem control register.

3.5.5 UARTHW_setDTR

The DSK 5402 based 16550 UART driver sets the DTR line using the modem control register.

3.5.6 UARTHW_setBreak

The DSK 5402 based 16550 UART driver sets the break condition using the line control register.

3.5.7 UARTHW_txEmpty

The DSK 5402 based 16550 UART driver detects the condition using the line status register.

3.5.8 UARTHW_writeChar

The DSK 5402 based 16550 UART driver transmits the character through the transmit register.

3.5.9 Hardware UART Interrupt Handling

The DSK 5402 based 16550 UART generates an interrupt for the following conditions:

1. New character received

2. Transmit Buffer Empty

3. Line status changed due to errors in framing or buffer over runs

4. Modem status change.

For all of these conditions, the low-level device specific UART driver handles the generated
interrupt and invokes the handler in the generic UART layer with the relevant information. The
handlers in the generic UART layer for these events were discussed above.

SPRA882A

19 DSP/BIOS Hardware and Software UART Device Drivers

3.6 Software UART Implementation

This section discusses the functions implemented by the software McBSP based UART. In our
case, we will describe a C5402, C5510, C6711, and C6412 implementation of this driver. This
section also describes the interrupt handling in the lower layer for this implementation.

3.6.1 Background Information

The biggest challenge in interfacing a synchronous device to an asynchronous signal is not in
the transmission but rather in the reception. Transmission is a simple process in terms of the
timings of the signals; the serial port can transmit according to its clock and the receiver will
correctly decode the signal, as long as the start and stop bits are appropriately placed and the
sampling rate is appropriate. The receiver timings are more complicated. The asynchronous
signal, by nature, can be received at any time, and most likely will not be aligned with the serial
port clock. Also, there can be slight differences in the baud rate compared to the sample rate of
the serial port, causing the received data to “slide”. Because of these issues, the serial port
receive channel and software must be setup appropriately to recognize these constraints and to
work around them.

The length of the packets are start bits + data bits + stop bits. There is 1 start bit and 1-stop bits.

For the McBSP to be used for the purposes of a software UART, it must be set up for dual phase
frames, with the first phase having 16-bit words and the second having 8 bit words. For the
purposes of calculating the frame lengths, the driver is always set up to have 8 bit word size, no
parity and two half stop bits while transmitting and one half stop bit while receiving.

For the McBSP to be used for the purposes of a software UART for transmission, the UART
must be able to send half stop bits. Therefore, the McBSP transmit port is set for dual phase
frames, with the first phase having 16 bit words and the second phase having 8-bit words. For
the purposes of calculating the frame lengths, the driver is always set up to have 8-bit word size,
no parity and two half stop bits. The data transmit (DX) pin of the DSP is tied to the transmit data
line of the interface.

From Figure 3 we can see that the asynchronous signal line is always high unless a data packet
has been sent across. When a packet is sent, the start bit is sent first, so the signal will go low.
By tying the receive data line to the data receive (DR) and frame sync (FSR) pins of the McBSP
receive channel, we can trigger the McBSP to start receiving the packet whenever the line goes
low. To prevent the McBSP from re-triggering, it is set to ignore all frame syncs during the
receive packet.

SPRA882A

20 DSP/BIOS Hardware and Software UART Device Drivers

Idle Start LSB MSB Parity Stop Idle

Data Word

1 bit

Packet

Figure 3. UART Data Packet

During decoding, the center of each over-sampled bit is checked. Only the first half of the stop
bit is received and checked, which gives more flexibility in the sampling rate, as will be seen
below. Therefore, the McBSP receive port is set to have dual phase frames. The word size of
the first phase is 16 bit words and the second phase is one 8 bit word. See Figure 4 for an
example of how the McBSP receive frame aligns with the data packet.

Idle Start LSB MSB

Half Stop Bits

Idle

Data Word

16 bits/
word

McBSP Receive Frame

Only the
first half

stop bit is
checked

8 bits/
word

Total bits in packet

Figure 4. McBSP Receive Frame Structure

SPRA882A

21 DSP/BIOS Hardware and Software UART Device Drivers

The sampling rate of the McBSP is critical to the correct operation of the software UART. The
McBSP will ignore all subsequent frame syncs during the reception of the frame we have
defined above. To get the maximum data rate, it must be able to detect the next start bit, which
could immediately follow the stop bit. The frames syncs and receive data are latched on the
falling edges of the serial port clock. For a frame sync to be detected, the signal must be high for
at least one clock cycle before it goes low again. This resets the frame sync logic. Therefore, the
McBSP must be finished reading in the first data packet before the transition from the stop bit to
the next start bit occurs.

In an ideal case, the clock edges of the serial port line up with the bit edges of the data packet,
there are exactly 16 clock periods for each bit in the packet, and the offset between the
beginning of the start bit and the falling edge of the serial port clock is minimal. See Figure 5 for
an example of this timing.

Stop Start LSB

1 bit = 16 clocks

Figure 5. Timing of a Signal-to-Serial Port Clock

The DMA setup involves opening the transmit and receive channels. In the case of the 5402, we
use the Auto Buffering Mode. In the case of our driver, we use post increment mode and the
driver writer may choose to change that if necessary.

The receive DMA channel is set up to transfer data from McBSP receive register to CPU
memory. The transmit DMA channel is set up to transfer data from CPU memory to McBSP
transmit register. The transfers are synchronized with McBSP receive and transmit events,
respectively. The driver plugs the interrupt handlers for the interrupt vectors corresponding to the
DMA channels to handle the DMA completion and error events. This driver validates
configuration parameters given by the application and returns success from this routine upon
successfully setting up and starting the DMA channels.

On the receive side, the McBSP is constantly running and always has the DMA enabled. The
DMA interrupts the DSP when a packet is read in and the DSP then decodes the over-sampled
packet and performs error checking. Note that the receive DMA channel only moves data into
the buffer when the McBSP gets new frame syncs, which only occurs when a new packet is
received. Because the DMA buffer has 2 halves, the receive data is double buffered.

The DMA transmit buffer has 2 halves, allowing double buffering of the transmit data. As long as
there is an empty half, more transmit data can be written into the buffer. If the DMA transmit
channel generates an interrupt but there is still another word in the buffer to transmit, the DMA
need not be disabled. However, if the DMA has just transmitted the last valid word in the buffer,
the DMA must be halted and then restarted when a new transmission is desired.

SPRA882A

22 DSP/BIOS Hardware and Software UART Device Drivers

3.7 Software Line Driver

The software UART I/O mini-driver was tested using a line driver daughter card connected to the
80-pin peripheral interface on the board. The Peripheral interface has multiple singles brought
out. The signals of interest for the software UART are the McBSP data transmit (DX) pin, the
McBSP data receive (DR) pin, and the McBSP frame sync receive (FSR) pin. These are the pins
from which asynchronous data will be transmitted and received. Figure 6 illustrates the line
driver card used to validate the driver. Note from the schematic the both the McBSP data receive
data pin and the McBSP Receive Frame Sync are tied together. By tying the receive data line to
the data receive (DR) and frame sync (FSR) pins of the McBSP receive channel, we can trigger
the McBSP to start receiving the packet whenever the line goes low as described in the previous
section.

McBSP1 receive data
(periph connector

CONN DB9 male
pin3

CONN DB9 male
pin2

McBSP1 receive frame sync
(periph connector

McBSP1 transmit data
(periph connector

Wire to PC UART

J2 pin 36)

J2 pin 42)

J2 pin 41

Figure 6. Line Driver Daughtercard Schematic

SPRA882A

23 DSP/BIOS Hardware and Software UART Device Drivers

3.7.1 UARTHW_attach

The McBSP based software UART implementation must setup the McBSP. The application
should supply the configuration required through the configuration structure. If none is provided,
a default structure is assumed. The structure will vary depending on the ISA/CPU supported.
Tan example of the default structure can be found in one of the following files:

• Uarthw_c55xx_mcbsp.c

• Uarthw_C54xx_mcbsp.c

• Uarthw_c6x1x_mcbsp.c

The UARTHW_attatch function makes a call to UARTHW_MCBSP_start which starts the
McBSP and the DMA, sets up the transmit and receive buffers, and plugs-in the appropriate
interrupt service routine (ISR). The UARTHW_MCBSP_setup function will vary depending on
ISA.

3.7.2 UARTHW_resetDevice

The McBSP based software UART implementation has a dummy implementation for this
function.

3.7.3 UARTHW_getModemStatus

The McBSP based software UART implementation returns an error value, as the software UART
does not support this function.

3.7.4 UARTHW_setRTS

The McBSP based software UART implementation does not support this function and returns an
error.

3.7.5 UARTHW_setDTR

The McBSP based software UART implementation does not support this function and returns an
error.

3.7.6 UARTHW_setBreak

The McBSP based software UART implementation records the break condition status and
transmits all zeroes on the McBSP line if a break condition is desired and transmits all ones on
the McBSP line if the break condition is turned off.

3.7.7 UARTHW_txEmpty

The McBSP based software UART implementation bases this decision on whether it has a
character to be transferred out by the DMA. If so, it returns 0. Otherwise, it returns a non-zero
value.

3.7.8 UARTHW_writeChar

The McBSP based software UART implementation stores the character to be transmitted in an
internal buffer. When the next transmit DMA interrupt occurs, the character is encoded and
transmitted over the McBSP channel.

SPRA882A

24 DSP/BIOS Hardware and Software UART Device Drivers

3.8 Software UART Interrupt Handling

The McBSP based software UART implementation handles two interrupts: one for the DMA
transmit channel and one for the DMA receive channel. The transmit channel interrupt is
triggered after each half the buffer has been transmitted. When no characters are being sent,
the buffer contains all ones, which maintains the line high. When a character needs to be sent, it
is encoded and the corresponding data is put in the transmit buffer which is transmitted over the
McBSP line. In any case, the transmit DMA channel is always active and transmitting the data it
has in its buffer.

The receive DMA channel interrupt is triggered whenever a new character is received, which in
turn triggers a receive frame sync to be generated. Upon receipt of the frame sync, the McBSP
channel samples the receive line at the set frequency and data collected is transferred through
the DMA into the internal receive buffer. When the buffer is filled up (either half can be filled up),
a receive channel interrupt is triggered. Upon receipt of this interrupt, the data in the receive
buffer is decoded and a character is constructed out of the data.

From the respective interrupt handlers, the high level UART driver’s transmit empty or receive
buffer full handlers are invoked and data is transmitted or buffered as in the case of a normal
hardware based UART.

3.8.1 Constraints

The DMA is used in the implementation for each of the MCBSP based software UARTs. This
introduces the following constraints:

• For C6x11, the .bss section must reside in a non-cached region of memory. This is needed
to maintain coherency between the CPU and the EDMA that is interfacing with the McBSP. If
the application requires the .bss memory section to be in cached memory, the
uarthw_mcbsp.c code can be modified to include CSL cache calls to keep the cache
coherent. The code can also be modified to specify an alternate section for the rxBuffer and
txBuffer using ‘#pragma DATA_SECTION’. You will need to modify the linker .cmd file to
include this new section.

• For C5402, the .bss section must reside at an address less than 0x4000. This is required
since the DMAs on the C5402 can only address data memory in this area. If placing .bss at
this address is a problem, the code in uarthw_mcbsp.c can be modified to specify an
alternate section for rxBuffer and txBuffer using ‘#pragma DATA_SECTION’. You will need to
modify the linker .cmd file to include this new section.

• For C55x, the .bss section must reside in on-chip DARAM. This is required since the DMA is
hard-coded to use the DARAM port. You can modify the code in uart_mcbsp.c to change the
DMA port type. The code can also be modified to specify an alternative section for rxBuffer
and txBuffer using ‘#pragma DATA_SECTION’. You will need to modify the linker .cmd file to
include this new section.

4 References
1. TMS320C6000 McBSP: UART (SPRA633A)

2. Implementing a Software UART on the TMS320C54x with the McBSP and DMA
(SPRA661A)

SPRA882A

25 DSP/BIOS Hardware and Software UART Device Drivers

Appendix A Device Driver Data Sheet

A.1 Device Driver Library Name (Generic Interface)

• uartmd.l54 (near mode) and uartmd.l54f (far mode) for the TMS320C54xx DSPs.

• uratmd.l55 (small model) and uartmd.l55l (large model) for the TMS320C55xx DSPs.

• uartmd.l62 for the TMS320C621x and TMS320C671x DSPs.

• uartmd.l64 for the TMS320C641x DSPs.

A.2 Device Driver Library Name (Hardware Specific)

• uarthw_c5402_mcbsp.l54 (near mode) and uarthw_c5402_mcbsp.l54f (far mode) for
theTMS320C5402 Software UART.

• uarthw_c5509_mcbsp.l55 (small model) and uarthw_c5509_mcbsp.l55l (large model) for the
TMS320C5509 software UART.

• uarthw_c5510_mcbsp.l55 (small model) and uarthw_c5510_mcbsp.l55l (large model) for the
TMS320C5510 Software UART.

• uarthw_c6x1x_mcbsp.l62 for the TMS320C671x Software UART

• uarthw_c6x1x_mcbsp.l64 for the TMS320C641x Software UART

• uarthw_dsk5402.l54 (near mode) and uarthw_dsk5402.l54f (far mode) for the
TMS320C5402 Hardware UART.

A.3 DSP/BIOS Modules Used (Generic Interface)

• HWI – Hardware Interrupt Manager

• QUE – Queue Manager

• IOM – I/O Manager

• ATM – Atomic Manager

A.4 DSP/BIOS Modules Used (Hardware Specific)

• uarthw_c5402_mcbsp

– HWI – Hardware Interrupt Manager

– IOM – I/O Manager

• uarthw_c5509_mcbsp and uarthw_c5510_mcbsp

– HWI – Hardware Interrupt Manager

– IOM – I/O Manager

• uarthw_c6x1x_mcbsp

– HWI – Hardware Interrupt Manager

– IOM – I/O Manager

• uarthw_dsk5402

SPRA882A

26 DSP/BIOS Hardware and Software UART Device Drivers

– HWI – Hardware Interrupt Manager

– IOM – I/O Manager

A.5 DSP/BIOS Objects Used (Generic Interface)

QUE_Obj

A.6 DSP/BIOS Objects Used (Hardware Specific)

• uarthw_c5402_mcbsp – none

• uarthw_c5509_mcbsp – none

• uarthw_c5510_mcbsp – none

• uarthw_c6x1x_mcbsp – none

• uarthw_dsk5402 – none

A.7 CSL Modules Used (Generic Interface)

None

A.8 CSL Modules Used (Hardware Specific)

• uarthw_c5402_mcbsp

– McBSP module

– DMA module

– IRQ module

• uarthw_c5509_mcbsp and uarthw_c5510_mcbsp

– McBSP module

– DMA module

– IRQ module

• uarthw_c6x1x_mcbsp

– McBSP module

– EDMA module

– IRQ module

• uarthw_dsk5402

– IRQ module

A.9 CPU Interrupts Used (Hardware Specific)

None

A.10 CPU Interrupts Used (Generic Interface)

• uarthw_c5402_mcbsp

SPRA882A

27 DSP/BIOS Hardware and Software UART Device Drivers

– DMA interrupt

• uarthw_c5510_mcbsp

– DMA interrupt

• uarthw_c6x1x_mcbsp

– EDMA interrupt

• uarthw_dsk5402

– UART interrupt

A.11 Peripherals Used (Generic Interface)
None

A.12 Peripherals Used (Hardware Specific)
• uarthw_c5402_mcbsp

– McBSP

– DMA

• uarthw_c5509_mcbsp and uarthw_c5510_mcbsp

– McBSP

– DMA

• uarthw_c6x1x_mcbsp

– McBSP

– EDMA

• uarthw_dsk5402

– UART

A.13 Interrupt Disable Time

Maximum time that hardware interrupts can be disabled by the driver:

• 217 cycles – uarthw_c5402_mcbsp

• 153 cycles – uarthw_c5509_mcbsp and uarthw_c5510_mcbsp

• 156 cycles – uarthw_c6x1x_mcbsp

• 217 cycles – uarthw_dsk5402

This measurement is taken using the compiler option –O3.

A.14 Memory Usage

Table A–1. Uarthw_dsk5402 Device Driver Memory Usage

Uninitialized memory Initialized memory

CODE — 369 (16-bit words)

DATA 6 (16-bit words) 7 (16-bit words)

SPRA882A

28 DSP/BIOS Hardware and Software UART Device Drivers

Table A–2. Uarthw_c5402_mcbsp Device Driver Memory Usage

Uninitialized memory Initialized memory

CODE — 912 (16-bit words)

DATA 98 (16-bit words) 10 (16-bit words)

Table A–3. Uarthw_c5509_mcbsp and
Uarthw_c5510_mcbsp Device Driver Memory Usage

Uninitialized memory Initialized memory

CODE — 1790 (8-bit bytes)

DATA 64 (8-bit bytes) 60 (8-bit bytes)

Table A–4. Uarthw_c6x1x_mcbsp62 Device Driver Memory Usage

Uninitialized memory Initialized memory

CODE — 3392 (8-bit bytes)

DATA 152 (8-bit bytes) 28 (8-bit bytes)

Table A–5. Uarthw_c6x1x_mcbsp64 Device Driver Memory Usage

Uninitialized memory Initialized memory

CODE — 2816 (8-bit bytes)

DATA 156 (8-bit bytes) 28 (8-bit bytes)

NOTE: This data was gathered using the sectti command utility.
Uninitialized data: .bss
Initialized data: .cinit + .const
Initialized code: .text + .text:init

Table A–6. Uartmd Device Driver Memory Usage on 54 Platform

Uninitialized memory Initialized memory

CODE — 1088 (words)

DATA 108 (16-bit words) 16 (16-bit words)

Table A–7. Uartmd Device Driver Memory Usage on 55 Platform

Uninitialized memory Initialized memory

CODE — 1386 (8-bit bytes)

DATA 248 (8-bit bytes) 56 (8-bit bytes)

SPRA882A

29 DSP/BIOS Hardware and Software UART Device Drivers

Table A–8. Uartmd Device Driver Memory Usage on 62 Platform

Uninitialized memory Initialized memory

CODE — 3520 (8-bit bytes)

DATA 224 (8-bit bytes) 144 (8-bit bytes)

Table A–9. Uartmd Device Driver Memory Usage on 64 Platform

Uninitialized memory Initialized memory

CODE — 2880 (8-bit bytes)

DATA 224 (8-bit bytes) 144 (8-bit bytes)

NOTE: This data was gathered using the sectti command utility.
Uninitialized data: .bss
Initialized data: .cinit + .const
Initialized code: .text + .text:init

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

