

Designing an Embedded
Operating System with the
TMS320 Family of DSPs
APPLICATION BRIEF: SPRA296A

Astro Wu
 DSP Applications – TI Asia

Digital Signal Processing Solutions
 December 1998

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and complete.
All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS
OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ('CRITICAL
APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD
TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask work
right, or other intellectual property right of TI covering or relating to any combination, machine, or process in
which such semiconductor products or services might be or are used. TI's publication of information
regarding any third party's products or services does not constitute TI's approval, warranty, or endorsement
thereof.

Copyright  1998, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract 7
Product Support on the World Wide Web ... 8
Performance Consideration ... 9

Task Scheduler ... 9
Scheduling .. 9
Context Switching ... 14

Interrupt Response ... 16
Determinism.. 16

Task State Transition.. 17
Event State Transition .. 18
Timer Resource Consideration .. 21

Timer Structure ... 21
EPROM Addressing Considerations ... 23

Application Interface Consideration... 24
Single Entry Point ... 24
When Application is written in C.. 25
When the Application is Written in Assembly .. 27

Appendix A. Calling Convention for C5x and C54x.. 29
TMS320C5x.. 29

Stack When Entering Subroutine .. 29
TMS320C54x.. 30

Stack When Entering Subroutine .. 30
References .. 31

Figures
Figure 1. Mapping the Structure of the Ready List ... 11
Figure 2. Interrupt Latency, Response, and Recovery Time... 16
Figure 3. Task State Transition Diagram.. 17
Figure 4. Kernel Service State Diagram for TASK_CREATE ... 18
Figure 5. Kernel Service State Diagram for SEMAPHORE_PEND................................. 19
Figure 6. Kernel State Diagram for SEMAPHORE_POST.. 20
Figure 7. Data Structure for Timer Control List... 21
Figure 8. Circuit and Memory Layout for C5x Extended Memory Addressing................. 23
Figure 9. Kernel API Block Diagram... 24

Examples
Example 1. Task Scheduler Codes Written in C and C5x Assembly 12
Example 2. Contexts for Interrupt Mode (STACK_FRAME plus INT_SAVE) and Non-

interrupt Mode (STACK_FRAME) in C5x Assembly...................................... 15
Example 3. Kernel Service as C Code (for Applications in C) .. 25
Example 4. Kernel Service as Assembly Code (for Applications in C).............................. 26
Example 5. Kernel Service as Assembly Code (for Applications in Assembly)................. 27

Designing an Embedded Operating System with the TMS320 Family of DSPs 7

Designing an Embedded Operating
System with the TMS320 Family of

DSPs

Abstract

Application software targeted for today’s digital signal processors
(DSP) is becoming more complex. DSPs are now incorporated
with numerically intensive algorithms and must perform complex
system control and communication protocols previously relegated
to general-purpose microprocessors. When a complicated control
is mixed with DSP software, the problem arises of how to
implement a real-time kernel.

The Texas Instruments (TI™) TMS320 family of DSPs has
evolved over the years from a simple attached numbers cruncher
to a system on a chip. Sophisticated telecommunication systems
are developed with TI DSPs such as the TMS320C5x,
TMS320C54x, and TMS320C6x, which have MIPS greater than
50. As a result, more and more engineers face the problem of
combining a previously implemented microcontroller base and
their DSP code to implement a real-time operating system (OS).

This application note previews some of the problems facing
designers of real time operating systems, and discusses how
future applications with real time kernels will be implemented with
high-speed DSP chips such as the Texas Instruments TMS320
series.

The operating system design described in this application note is
based on information in the book by Jean J. Labrosse, uC/OS,
The Real-Time Kernel, Lawrence, Kansas, R & D Publications,
1992. ISBN 0-13-242967-5.

SPRA296A

8 Designing an Embedded Operating System with the TMS320 Family of DSPs

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 9

Performance Consideration

A number of factors affect a real-time kernel’s performance:

� Task scheduler

� Interrupt response

� Determinism

Task Scheduler

The task scheduler is invoked before the real-time kernel
completes service to an event from an application or when the
interrupt service is completed. Therefore, the task scheduler could
be the most frequently activated procedure in the activities of the
kernel operations. It includes two timing factors:

� Scheduling

� Context switching

These factors must be considered when reducing the time
consumed by the task scheduler.

Scheduling

In a preemptive kernel such as used in our design, scheduling
decides the highest priority task to run. Context scheduling is
performed whenever the highest priority task in ready has higher
priority than the current running task. Traditionally, the Ready List
is designed as a Linked List (single or multiple) data structure that
maintains a list of Task Control Block (TCB) pointers. This means
we must search the list for the pointer of the highest priority TCB.
The following method uses the ReadyTable to determine the
highest priority TCB.

A TCB enters the Virtual Ready List by mapping its priority to the
ReadyGroup and ReadyTable[] base on the functions below which
can support 8x8 tasks (in C code):

ReadyGroup |= 8 >> (pTCB->Priority >> 3);
ReadyTable |= 8 >> (pTCB->Priority & 0x07);

For design flexibility, we can rewrite the above code as:

#define MAX_NTASK 64 .
#define COL_MASK 7
#define MAX_COL_READY 8
#define MAX_ROW_READY 8
#define MAX_NCOL 3
ReadyGroup |= MAX_ROW_READY >> (pTCB->Priority >> MAX_NCOL);
ReadyTable |= MAX_COL_READY >> (pTCB->Priority & COL_MASK);

SPRA296A

10 Designing an Embedded Operating System with the TMS320 Family of DSPs

When fetching the highest priority pointer of the TCB
(TCBHighReady) in the Ready List (TCBPriTbl[]), we use the
functions below (in C code) :

P = HighPriTCBIndexTbl[ReadyGroup];
TCBHighRdy = TCBPriTbl[(P << 3) +

 HighPriTCBIndexTbl[ReadyTbl[P]]];

HighPriTCBIndexTbl[] is generated into the program according to
the following rules. For simplicity we use the maximum tasks 8x8
case:

HighPriTCBIndexTbl[N] = P, where N is the table index and P is its
container.

N = 2^K(2L+1) and P = 7-K

where

K= 0,1,…,8
L is integer ≥ 0
N = 0,1,…,255

The above formula is obtained by transforming the bit flag of
ReadyGroup as well as ReadyTable[]. For example, the bit flag of
ReadyGroup 11101110 will be 10000000 since only one bit (bit 7)
denotes the highest priority group.

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 11

Figure 1. Mapping the Structure of the Ready List

0 1 2 3 4 5 6 7

[7] 0 1 2 3 4 5 6 7

[6] 8 9 10 11 12 13 14 15

[5] 16 17 18 19 20 21 22 23

[4] 24 25 26 27 28 29 30 31

[3] 32 33 34 35 36 37 38 39

[2] 40 41 42 43 44 45 46 47

[1] 48 49 50 51 52 53 54 55

[0] 56 57 58 59 60 61 62 63

0 0 R2 R1 R0 C2 C1 C0

Note: The numbers in the table denote lowest to highest priority from 0 to 63. Each cell contains a bit I/0 to indicate
setting/resetting for Task with a specific priority. (This is just an example of the kernel supporting 64 tasks.)

For portability and maintainability of the kernel system, most code
is written in C except for those procedures that are time critical to
the kernel’s performance. Actually, we can write all of the codes in
C except for the Context Switch codes written in Assembly.
Therefore, the code’s effort is reduced when utilizing the codes
from C5x for other DSPs, such as C6x. With support from the
Assembler tools, we can also rewrite Scheduler code in TMS320
Assembly without losing much of the maintainability (see
Example 1).

ReadyGrou p

 C

ReadyTable[8]

Task’s Priority

 R

Where C0-2 denotes the column index of bit
position in ReadyTable[8] and R0-2 denotes the
row index of bit position in ReadyGroup.

SPRA296A

12 Designing an Embedded Operating System with the TMS320 Family of DSPs

Example 1. Task Scheduler Codes Written in C and C5x Assembly

;void Scheduler(void)

;{

; UBYTE P;

; EnterCritical();

; if ((LockNesting | IntNesting) == 0)

; {

; /*

; * Task scheduling must be enabled and not ISR level

; */

; P = HighPriTCBIndexTbl[ReadyGroup]; /* Get PTR to highest pri task
ready to run */

; TCBHighRdy = TCBPriTbl[(P << 3) + HighPriTCBIndexTbl[ReadyTbl[P]]];

; if (TCBHighRdy->Priority > TCBCurrent->Priority)

; {

; /*

; * Make sure this is not the current task running

; */

; OSCtxSwCtr++; /* Increment context switch counter
*/

; ContextSwitch(); /* Perform a context switch */

; }

; }

; ExitCritical();

;} Scheduler

 EnterCritical

 lar AR4,#os_mem_start+OS_CONTROL.IntNesting

 lacl *

 lar AR4,#os_mem_start+OS_CONTROL.LockNesting

 or *

 bcnd ExitScheduler,NEQ

 lacl #HighPriTCBIndexTbl

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 13

 samm indx

 lar AR4,#os_mem_start+OS_CONTROL.ReadyGroup

 lacl *0+

 samm indx ; indx= y =HighPriTCBIndexTbl[ReadyGroup]

 sacb ; accb=y

 lar ar4,#os_mem_start+OS_CONTROL.ReadyTbl

 lacl *0+ ; acc=z= ReadyGroup[y]

 samm indx ; indx= x

 rpt #MAX_NCOL-1

 sflb ; accb= y << MAX_NCOL

 lar ar4,#HighPriTCBIndexTbl

 lacl *0+ ; acc=z= HighPriTCBIndexTbl[x]

 addb ; acc=p= y<<MAX_NCOL+ z

 samm indx ; indx=p

 lar AR4,#os_mem_start+OS_CONTROL.TCBPriTbl

 lacl *0+

 lar AR4,#os_mem_start+OS_CONTROL.TCBHighReady

 sacl * ; TCBHighReady= TCBPriTbl[p]

 add #OS_TCB.Priority

 samm AR4

 lacl * ; acc= TCBPriTbl->Priority

 lar AR4,#os_mem_start+OS_CONTROL.TCBCurrent

 lar AR4,*

adrk AR4,#OS_TCB.Priority

 clrc sxm

 sub * ; Q: TCBHighReady->Priority <=
TCBCurrent->Priority

 bcnd ExitSchedular,LEQ ; Y: Don't do task switching

 lar AR4,#os_mem_start+OS_CONTROL.StatusBits

 opl SCHED_RUNNING_BIT,*

 lar AR4,#os_mem_start+OS_CONTROL.CtxSwCtr

 lacl *

 add #1 ; CtxSwCtr++

SPRA296A

14 Designing an Embedded Operating System with the TMS320 Family of DSPs

 sacl *

 ExitCritical

 b ContextSwitch

ExitScheduler

 ExitCritical

 lacl * ; Return task handle

 b KernelService_Exit

Context Switching

Context switching is invoked for:

� Non-interrupt mode when the kernel has completed service to
the event coming from a task

� Interrupt mode when the interrupt service routine is completed.

Because interrupt can happen anywhere in the code, we need to
save/restore the whole context. In the non-interrupt mode, context
needs to be saved/restored only when the task calls the operating
system kernel service. Moreover, context switching is not allowed
during nested interrupts because interrupt must have a higher
priority than any task.

Because DSPs such as the C5x, C54x, and C6x provide many
auxiliary registers, and the C compiler protects some registers
before calling another subroutine in C or Assembly (see
Appendix A), we do not need to save context for those registers
when switching tasks in the non-interrupt mode.

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 15

Example 2. Contexts for Interrupt Mode (STACK_FRAME plus INT_SAVE) and
Non-interrupt Mode (STACK_FRAME) in C5x Assembly

STACK_FRAME .struct ; Task Control Block
ST1 .word ; ST0 register
ST0 .word ; ST1 register
PMST .word ; PMST register
AR0 .word ; AR0 register
AR1 .word ; AR1 register
AR6 .word ; AR6 register
AR7 .word ; AR7 register
Page .word ; Current code Page
Return .word ; Hardware stack level 1 for C5x only
HardStack .space 6*16 ; Hardware stack level 2-7 for C5x only
Stack8 .word ; Hardware stack level 8 for C5x only
STACK_FRAME_LEN .endstruct

INT_SAVE .struct ; OS interrupt save area
ST1 .word ; Interrupted code's ST1 register
ST0 .word ; Interrupted code's ST0 register
Return .word ; Interrupted code's Return address
StackPtr .word ; Interrupted code's stack pointer
AR2 .word ; Interrupted code's AR2 register
AR3 .word ; Interrupted code's AR3 register
AR4 .word ; Interrupted code's AR4 register
AR5 .word ; Interrupted code's AR5 register
ACCL .word ; Interrupted code's accumulator
ACCH .word ; Interrupted code's accumulator
ACCBL .word ; Interrupted code's accumulator B
ACCBH .word ; Interrupted code's accumulator B
PMST .word ; Interrupted code's PMST register
RPTC .word ; Interrupted code's RPTC register
BRCR .word ; Interrupted code's BRCR register
PASR .word ; Interrupted code's PASR register
PAER .word ; Interrupted code's PAER register
TREG2 .word ; Interrupted code's TREG2 register
TREG1 .word ; Interrupted code's TREG1 register
TREG0 .word ; Interrupted code's TREG0 register
PREGH .word ; Interrupted code's product register
PREGL .word ; Interrupted code's product register
DBMR .word ; Interrupted code's DBMR register
INDX .word ; Interrupted code's INDX register
ARCR .word ; Interrupted code's ARCR register
BMAR .word ; Interrupted code's BMAR register
INT_SAVE_LEN .endstruct
Note: The ‘Page’ in STACK_FRAME is used for extended memory addressing. In C54x ‘page’ will be replaced with

XPC.

SPRA296A

16 Designing an Embedded Operating System with the TMS320 Family of DSPs

Interrupt Response

The interrupt response time includes Interrupt Latency, Hardware
Context Save, and Software Context Save. Improvements we can
make are to Interrupt Latency by shortening the time in the critical
section, and Software Context Save which is written in optimized
Assembly code. We must disable all interrupts before entering the
critical section and then enable the interrupts again after leaving
the section.

Figure 2. Interrupt Latency, Response, and Recovery Time

Note: The response time is one factor in operating system performance.

Determinism

Kernel service should be deterministic by specifying how long
each service call will take to execute. Some kernel services (such
as Semaphore Pend, Semaphore Post, Mailbox Pend, and
Mailbox Post) are frequently invoked. Thus, more attention should
be given to these services when doing the optimization for
shortening the average of the kernel service time.

TASK TASK

Main ISR Code

Context Restore
Software Context
Save

Hardware Context Save

Interrupt Request

Interrupt Latency

Interrupt

Interrupt
Recovery

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 17

Task State Transition

The task can be designed in five states.

� Sleeping (Dormant)

� Ready

� Pending

� Running

� Interrupted

Figure 3 shows the task state transition diagram. (We can remove
the Sleeping State if we don’t need to delete a task when the OS
kernel is running.)

Figure 3. Task State Transition Diagram

Sleeping

Pending

Interrupted

RunningReady

SemphorePost()
MailboxPost()
QueuePost()
TimeTick()

SemaphorePend()
MailboxPend()
QueuePend()

IntExitInterrupt

KernelStart()
ContextSwitch()

Task Preempted

TaskDelete()

TaskDelete()

TaskDelete()

TaskCreate()

SPRA296A

18 Designing an Embedded Operating System with the TMS320 Family of DSPs

Event State Transition

When an application calls for kernel service, it sends an event
parameter that arouses the OS kernel to perform appropriate
processes. To more clearly understand our design for event
processing of the OS kernel, we use the event state transition
diagrams shown in Figure 4 through Figure 6 for the following
events:

� TASK_CREATE

� SEMAPHORE_PEND

� SEMAPHORE_POST

Figure 4. Kernel Service State Diagram for TASK_CREATE

TCB
Allocated

KernelService

Scheduling

ContextSwitch

2.1.Successful

3.0 No preempt

3.1. Preempt current task

4. Done
1.Invoke TaskCreate

2.0.Fail

Event from AP: TASK_CREATE

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 19

Figure 5. Kernel Service State Diagram for SEMAPHORE_PEND

Check for pend

KernelService

Scheduling

ContextSwitch

Suspend Task

2.2.T imeout
4.0 No preempt

4.1. Preempt current task

5. Done
1. Invoke
Sem aphorePend

2.0.No timeout
and
Count is > 0 (has
sema posted)

Event from AP: SEM APHORE_PEND

2.1.Count is 0

3. Done

SPRA296A

20 Designing an Embedded Operating System with the TMS320 Family of DSPs

Figure 6. Kernel State Diagram for SEMAPHORE_POST

Check for Pending

KernelService

Scheduling

ContextSwitch

2.1.Task Resumed

3.0 No preempt

3.1. Preempt current task

4. Done1.Invoke SemaphorePost

2.0.No pending Task

Event from AP: SEMAPHORE_POST

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 21

Timer Resource Consideration

A multiple timer resource can be selected normally. The timer
ticks can be internally selected from the DSP itself or from an
external device such as the analog interface circuit (AIC). For
example, if we need only one mini-second tick unit, we may not
need the internal timer interrupt, which could frequently interrupt
our tasks. Instead, we can use the AIC as an interrupt source and
assign a counter inside the AIC interrupt service routine to count
up to:

Sampling Rate (Hz) / Time of Tick (sec)

Timer Structure

The timer structure can be designed as a Linked List Timer Block
(see Figure 7).

Figure 7. Data Structure for Timer Control List

If we design the counter in Timer Block (TB) as ticks for time
expired, we should discount all TBs in the running list by one.
When one tick unit is timed out and there is a new TB, always
insert behind the tail. Instead of searching the whole list at that
time, we modify both the TB insertion and the counter value
assigned rules as follows:

*Timer_Hea
d
*Timer_Tail Counter

*Next_Ptr

*TCB

*Next_Ptr

*TCB

(TCB) (TCB)

1st TB final TB

Counter

SPRA296A

22 Designing an Embedded Operating System with the TMS320 Family of DSPs

� (Rule 1) For any Timer Block TBn in the Running List, its
counter is TBn.Counter and:

� (Rule 2) Its time-to-expired of TBn = TBk.Counter
k

n

=
∑

0

where k=0 is 1st TB in List , etc.

Based on rule 1, those TBs should be inserted in the list in an
ascending order for its counter.

So, when one tick unit is timed out, we only count down the
‘TB0.Counter’ by one and if it is zero, we invoke the TCB for task
switching.

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 23

EPROM Addressing Considerations

Because code in SRAM runs much faster than code in EPROM,
we usually copy the time critical codes (such as real-time signal
processing and real-time kernel) to the SRAM. But for the
embedded system and also for cost-effective considerations, we
put most codes in EPROM and copy the critical portion to Local
SRAM during run-time. The C5x DSP has limited addressing
ability to 64k word, so code words over 64k when put into EPROM
need a circuit for page selection, as shown in Figure 8.

Figure 8. Circuit and Memory Layout for C5x Extended Memory Addressing

Note: The C54x uses the XPC register for page selection.

C5x
DSP

E
P
R
O
M

74ALS373
(FlipFlop)

D0-
D7

A16-A18

A0-A15

Page Select

EPROM
Select
Circuit

A15

S
R
A
M

CE\

Local SRAM
(32K)

Task A…

ERPOM Page
0

(32k)

Task B…

ERPOM Page
n

(32k)

Global Data
Memory in

SRAM
(32k)

SPRA296A

24 Designing an Embedded Operating System with the TMS320 Family of DSPs

This function has been added to expand the memory addressing
of the C5x. Because the EPROM address is added internally to
the C54x and C6x, we can make page selections by writing to the
register directly.

The page selection information is part of the context and should
be stored in the stack of TCBs (see Example 2). Context will be
restored to the task located at a specific page of EPROM (see
Figure 8). No single task can be addressed to more than one page
space.

Application Interface Consideration

The application calls the kernel by feeding the proper event
relevant information to the kernel service. The following factors
should be addressed when designing the interface between the
application software and the operating system kernel:

� Ease of maintenance

� Debugging user-friendliness

� Portability

� Performance

Single Entry Point

A single entry point API (application program interface) is better
than multiple access points. It sets relevant service procedures
public to the application on issues of maintenance, debugging,
and user-friendliness just by increasing a bit of overhead.

Figure 9. Kernel API Block Diagram

Application
Software

Kernel Service (or
Event Service)

TaskCreate

MailboxPost

SemaphorePend

Events

Call

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 25

When Application is written in C

For applications written in C, we must provide a C procedure
interface between the user’s application and the OS kernel. This
section explains two methods that apply mainly to the C5x. It is
assumed that only a small effort is required for future portings to
the C54x and C6x.

Case I- Kernel Service as C Code

This method shown in Example 3 is based on the single entry
point API explained previously (see the section, Single Entry
Point). We use as little of the inline assembly code as possible.
The local variable declared in the procedure TSK_create will be
treated as an argument to the software interrupt vector called
KernelService.

Example 3. Kernel Service as C Code (for Applications in C)

void TSK_create (int pTask, int Priority)

{

 Stack_Frame p;

 p.ST0 = ST0;

 p.ST1 = ST1;

 p.PMST = PMST;

 p.KSEventID = CREATE_TASK;

 p.Arg2 = pTask;

 p.Arg3 = Priority;

 KERNEL_SERVICE;

}

#define KS_VECTOR 10

#define KERNEL_SERVICE \

 asm(" intr KS_VECTOR"); \

 asm(" ret ");

int KernelService (Stack_Frame *pStackFrame)

{

 TCBCurrent.StackPointer = pStackFrame;

SPRA296A

26 Designing an Embedded Operating System with the TMS320 Family of DSPs

 if (pStackFrame->KSEventID > MAX_KS_EVENTS)

return SYS_BAD_EVENT;

 return (*EventTable[pStackFrame->KSEventID])(pStackFrame)
;

}

int (* EventTable[]) (Stack_Frame *) =

{

CreateTask,

DeleteTask,

CreateSemaphore,

PostSemaphore,

PendSemaphore,

•••

};

Case II- Kernel Service as Assembly Code

In this case, we don’t need to design the interface in C. Because
registers such as AR2 to AR5 were protected in the caller’s local
frame by the C compiler when they entered this Assembly
interface, we don’t need to save those contexts to TCB’s stack
frame (see the Appendix).

Example 4. Kernel Service as Assembly Code (for Applications in C)

_TSK_create .def _TSK_create ; TSK_create (pTask, Priority)

* ar2-ar5 have been protected by caller in C

* we don’t need local variables

* on entry ARP = 1

 sar ar1,* ; save AR1 (SP) to Stack

 lar ar2,*,ar2 ; AR2 = AR1

 sbrk 1

 lacl *- ; get ARG1

 samm AR3 ; AR3 = pTask

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 27

 lacl * ; get ARG2

 samm AR4 ; AR4= Priority

 lar AR2, #CREATE_TASK

 call KernelService

When the Application is Written in Assembly

Case I- Kernel Service is C Code

This case will not be discussed, since it’s rarely happened.

Case II- Kernel Service is Assembly Code

In this case, we can design the interface as a Marco and use AR2
to AR5 and parameters for calling the kernel service. Since AR2 to
AR5 are known to Application as Assembly in such usage, we can
use them freely in Kernel without involving them in the context
switching.

Example 5. Kernel Service as Assembly Code (for Applications in Assembly)

TSK_create .macro pTask, Priority, StackFrame

 lar AR2,#CREATE_TASK ; Event ID

 lar AR3, pTask ; new Task functional entry pointer

 lar AR4, Priority ; Priority of new Task

 lar AR5, StackFrame ; Stack Frame Pointer

 call KernelService

 .endm ; TSK_create

KernelService

 lamm AR2 ; get EventID

 sub #EventTableEnd-EventTable ; Q: Is EventID out of range ?

 bcnd bad_event,GT ; Y: return SYS_BAD_EVENT

 add #EventTable ;

 sacb ; accb= event service function ptr

 EnterCritical

 mar *,AR5 ; AR5 : stack frame pointer

SPRA296A

28 Designing an Embedded Operating System with the TMS320 Family of DSPs

 sst #0,*+ ; push ST0 to software stack

 sst #1,*+ ; push ST1 to software stack

 ExitCritical

 lamm PMST ; get PMST register

 sacl *+ ; push PMST to software stack

 popd *+ ; push return address to software
stack

 lacb ; restore event service function ptr

 tblr temp

 lacl temp ;

 bacc ; Execute kernel service function

**
Kernel Service Event Function Table

EventTable

 .word CreateTask

 .word create_a_sem

 .word pend_on_sem

 .word PostSemaphore

 .word create_a_mbx

 .word pend_on_mbx

 (others …)

EventTableEnd

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 29

Appendix A. Calling Convention for C5x and C54x

TMS320C5x

The C Compiler does not preserve the following registers over
function boundaries.

Registers Used by C

FP (AR0) Long Frame Pointer

SP (AR1) Stack Pointer

AR6,AR7 Register Variables

The C Compiler preserves the following registers over function
boundaries.

Registers Used by C

ACC Accumulator

ACCB Accumulator Buffer

P Product Register

T Temporary Register

AR2-AR5 Auxiliary Registers 2 to 5

PMST Status Register

ST0, ST1 Status Register

Stack When Entering Subroutine

ARG n

•

ARG 1

Note: The return address is in Hardware Stack.

AR1

SPRA296A

30 Designing an Embedded Operating System with the TMS320 Family of DSPs

TMS320C54x

The C Compiler does not preserve the following registers over
function boundaries.

Registers Used by C

AR7 Long Frame Pointer

SP Stack Pointer

AR1,AR6 Register Variables

A 1ST Argument or Return Address

The C Compiler preserves the following registers over function
boundaries:

Registers Used by C

B Expression Analysis

T Expression Analysis

AR0 Pointers and expressions

AR2-AR5 Expression Analysis

BRC Loop registers (RSA, REA)

Stack When Entering Subroutine

Return

ARG 2

•

ARG n

Note: ARG1 is in ACC.

SP

SPRA296A

Designing an Embedded Operating System with the TMS320 Family of DSPs 31

References
Jean J. Labrosse, µC/OS The Real-Time Kernel

James L. Perterson, Operating System Concepts, Addsion-Wesley
Publishing Company

Andrew S. Tanenbaum, Modern Operating System, Prentice-Hall

TMS320C5x Assembly Language Tools, Literature number

TMS320C5x User’s Guide, Literature number SPRU056C

